Д. К. Самин
100 великих учёных
ВВЕДЕНИЕ
Наука прошла большой и сложный путь развития — от египетских и вавилонских памятников до атомных электростанций, лазеров и космических полётов. Человечество прошло и проходит длительный и трудный путь от незнания к знанию, непрерывно заменяя на этом пути неполное и несовершенное знание всё более полным и совершенным.
Обычно принято говорить о преемственности в науке. Без Евклида и Архимеда не было бы Ньютона, без Ньютона не было бы Эйнштейна и Бора и т. д. В общем, такое утверждение верно. По существу каждый исследователь должен быть осведомлён о том, что сделано до него в изучаемом им вопросе, критически оценить результаты, полученные его предшественниками. Однако из всякого правила есть исключения. Вот, например, немецкий математик Гаусс — воистину феноменальный учёный. Мало того, что он начал помогать считать отцу уже в три года. Поразительно, что Гаусс в юности, не имея доступа к математической литературе, самостоятельно воспроизвёл большинство результатов своих великих предшественников.
Так что утверждение, что нет таких работ, которые делались бы на пустом месте и каждое новое поколение начинает с того, на чём остановилось предыдущее, верно до некоторой степени. А, как известно, всякий уважающий себя учёный интересуется в первую очередь исключениями!
Эта книга начинается с рассказа о Пифагоре, Гиппократе и других учёных древности. Затем следуют биографии учёных, живших на рубеже XV и XVI веков. Вдумчивый читатель, вероятно, обратит внимание на гигантский разрыв между годами жизни Архимеда и Коперника. Почти 1700 лет! Удивительный разрыв. Ещё более удивительно, что мало кто обращает внимание на такой провал в жизни человечества. Конечно, наука могла знать и знала мрачные времена упадка и застоя, но трудно поверить, что ум человеческий мог столько спать. Стремление к знаниям, любопытство, наконец, присуще природе человека. Невозможно представить, что за такой гигантский срок никто не совершил ни одного открытия! Можно долго говорить о тяжёлых временах средневековья и инквизиции, но никакие казни не смогли остановить прогресса науки.
Может всё-таки прав академик математик А. Т. Фоменко, утверждающий, что история ранее второго тысячелетия ещё ждёт своего изучения. А пока против концепции учёного дружно выступили многочисленные апологеты традиционной науки. Слишком уж дерзкой выглядит попытка пересмотреть устоявшийся взгляд на прошлое.
Может быть, такой же дерзкой, как «аш-теорема» Людвига Больцмана. Её противники, к своей радости, обнаружили зияющие, непростительные, казалось бы, для такого великого учёного, как Больцман, изъяны. Оказалось, что если принять за истину гипотезу учёного, то надо принять за веру и такое чудовищное, не укладывающееся ни в какие рамки здравого смысла допущение. Рано или поздно, а точнее, уже сейчас, где-то во Вселенной должны идти процессы в обратном второму началу направлении, то есть тепло должно переходить от более холодных тел к более горячим! Это ли не абсурд.
Однако Больцман этот «абсурд» отстаивал, он был глубоко убеждён, что такой ход развития Вселенной наиболее естественный, ибо он является неизбежным следствием её атомного строения. Не выдержав травли, учёный покончил жизнь самоубийством, а его правота была позднее полностью подтверждена.
Больцман, Ламарк, Мендель — список учёных, чьи открытия не были признаны при жизни, можно продолжить. И есть только один объективный арбитр — время. Ведь существуют и примеры иного рода: множество «великих открытий» прошлого сегодня способны вызвать лишь улыбку.
Время действительно великий судья. С течением веков нередко трансформируется и оценка учёного и его достижений. Кеплер считал своим главным достижением «открытие» мифической связи между орбитами планет и правильными многогранниками. Ни одно своё открытие Галилей не ценил так, как ошибочное утверждение, что приливы и отливы доказывают истинное движение Земли. Гюйгенс считал своим важнейшим достижением применение циклоидального маятника в часах, который оказался полностью бесполезен на практике, да и вообще Гюйгенс, скорее всего, чувствовал себя неудачником, так как не смог решить главной своей задачи — создать морской хронометр.
Самые великие люди не защищены от ошибок в прогнозах. Сегодня и мы лишь гадаем: куда идёт наука? Что несёт она людям в будущем? Разрушение и уничтожение или расцвет человечества.
Последними словами великого Лапласа были: «То, что мы знаем, так ничтожно по сравнению с тем, что мы не знаем».
ПИФАГОР
(ок. 580 — ок. 500 до н. э.)
В VI веке до нашей эры средоточием греческой науки и искусства стала Иония — группа островов Эгейского моря, расположенных у берегов Малой Азии. Там в семье золотых дел мастера, резчика печатей и гравёра Мнесарха родился сын. По преданию, в Дельфах, куда приехали Мнесарх с женой Парфенисой, — то ли по делам, то ли в свадебное путешествие — оракул предрёк им рождение сына, который прославится в веках своей мудростью, делами и красотой. Бог Аполлон, устами оракула, советует им плыть в Сирию. Пророчество чудесным образом сбывается — в Сидоне Парфениса родила мальчика. И тогда по древней традиции Парфениса принимает имя Пифиада, в честь Аполлона Пифийского, а сына нарекает Пифагором, то есть предсказанным пифией.
В легенде ничего не говорится о годе рождения Пифагора; исторические исследования датируют его появление на свет приблизительно 580 годом до нашей эры. Вернувшись из путешествия, счастливый отец воздвигает алтарь Аполлону и окружает юного Пифагора заботами, которые могли бы способствовать исполнению божественного пророчества.
Возможности дать сыну хорошее воспитание и образование у Мнесарха были. Как всякий отец, Мнесарх мечтал, что сын будет продолжать его дело — ремесло золотых дел мастера. Жизнь рассудила иначе. Будущий великий математик и философ уже в детстве обнаружил большие способности к наукам. У своего первого учителя Гермодамаса Пифагор получает знания основ музыки и живописи. Для упражнения памяти Гермодамас заставлял его учить песни из «Одиссеи» и «Илиады». Первый учитель прививал юному Пифагору любовь к природе и её тайнам. «Есть ещё другая Школа, — говорил Гермодамас, — твои чувствования происходят от Природы, да будет она первым и главным предметом твоего учения».
Прошло несколько лет, и по совету своего учителя Пифагор решает продолжить образование в Египте, у жрецов. Попасть в Египет в то время было трудно, потому что страну фактически закрыли для греков. Да и властитель Самоса тиран Поликрат тоже не поощрял подобные поездки. При помощи учителя Пифагору удаётся покинуть остров Самос. Но пока до Египта далеко. Он живёт на острове Лесбос у своего родственника Зоила. Там происходит знакомство Пифагора с философом Ферекидом — другом Фалеса Милетского. У Ферекида Пифагор учится астрологии, предсказанию затмений, тайнам чисел, медицине и другим обязательным для того времени наукам. Пифагор прожил на Лесбосе несколько лет. Оттуда путь Пифагора лежит в Милет — к знаменитому Фалесу, основателю первой в истории философской школы. От него принято вести историю греческой философии.
Пифагор внимательно слушает в Милете лекции Фалеса, тогда уже восьмидесятилетнего старца, и его более молодого коллегу и ученика Анаксимандра, выдающегося географа и астронома. Много важных знаний приобрёл Пифагор за время своего пребывания в Милетской школе. Но Фалес тоже советует ему поехать в Египет, чтобы продолжить образование. И Пифагор отправляется в путь.
Перед Египтом он на некоторое время останавливается в Финикии, где, по преданию, учится у знаменитых сидонских жрецов. Пока он живёт в Финикии, его друзья добиваются того, что Поликрат — властитель Самоса, не только прощает беглеца, но даже посылает ему рекомендательное письмо для Амазиса — фараона Египта. В Египте благодаря покровительству Амазиса Пифагор знакомится с мемфисскими жрецами. Ему удаётся проникнуть в «святая святых» — египетские храмы, куда чужестранцы не допускались. Чтобы приобщиться к тайнам египетских храмов, Пифагор, следуя традиции, принимает посвящение в сан жреца.
Учёба Пифагора в Египте способствует тому, что он сделался одним из самых образованных людей своего времени. К этому периоду относится событие, изменившее его дальнейшую жизнь. Скончался фараон Амазис, а его преемник по трону не выплатил ежегодную дань Камбизу, персидскому царю, что послужило достаточным поводом для войны. Персы не пощадили даже священные храмы. Подверглись гонениям и жрецы, их убивали или брали в плен. Так попал в персидский плен и Пифагор.
Согласно старинным легендам, в плену в Вавилоне Пифагор встречался с персидскими магами, приобщился к восточной астрологии и мистике, познакомился с учением халдейских мудрецов. Халдеи познакомили Пифагора со знаниями, накопленными восточными народами в течение многих веков: астрономией и астрологией, медициной и арифметикой. Эти науки у халдеев в значительной степени опирались на представления о магических и сверхъестественных силах, они придали определённое мистическое звучание философии и математике Пифагора…
Двенадцать лет пробыл в вавилонском плену Пифагор, пока его не освободил персидский царь Дарий Гистасп, прослышавший о знаменитом греке. Пифагору уже шестьдесят, он решает вернуться на родину, чтобы приобщить к накопленным знаниям свой народ.
С тех пор как Пифагор покинул Грецию, там произошли большие изменения. Лучшие умы, спасаясь от персидского ига, перебрались в Южную Италию, которую тогда называли Великой Грецией, и основали там города-колонии Сиракузы, Агригент, Кротон. Здесь и задумывает Пифагор создать собственную философскую школу.
Довольно быстро он завоёвывает большую популярность среди жителей. Энтузиазм населения так велик, что даже девушки и женщины нарушали закон, запрещавший им присутствовать на собраниях. Одна из таких нарушительниц, девушка по имени Теано, становится вскоре женой Пифагора.
В это время в Кротоне и других городах Великой Греции растёт общественное неравенство; вошедшая в легенды роскошь сибаритов (жителей города Сибариса) бок о бок соседствует с бедностью, усиливается социальная угнетённость, заметно падает нравственность. Вот в такой обстановке Пифагор выступает с развёрнутой проповедью нравственного совершенствования и познания. Жители Кротона единодушно избирают мудрого старца цензором нравов, своеобразным духовным отцом города. Пифагор умело использует знания, полученные в странствиях по свету. Он объединяет лучшее из разных религий и верований, создаёт свою собственную систему, определяющим тезисом которой стало убеждение в нерасторжимой взаимосвязи всего сущего (природы, человека, космоса) и в равенстве всех людей перед лицом вечности и природы.
В совершенстве владея методами египетских жрецов, Пифагор «очищал души своих слушателей, изгонял пороки из сердца и наполнял умы светлой истиной». В Золотых стихах Пифагор выразил те нравственные правила, строгое исполнение которых приводит души заблудших к совершенству. Вот некоторые из них: не делай никогда того, чего ты не знаешь, но научись всему, что следует знать, и тогда ты будешь вести спокойную жизнь; переноси кротко свой жребий, каков он есть, и не ропщи на него; приучайся жить без роскоши.
Со временем Пифагор прекращает выступления в храмах и на улицах, а учит уже в своём доме. Система обучения была сложной, многолетней. Желающие приобщиться к знанию должны пройти испытательный срок от трёх до пяти лет. Всё это время ученики обязаны хранить молчание и только слушать Учителя, не задавая никаких вопросов. В этот период проверялись их терпение, скромность.
Пифагор учил медицине, принципам политической деятельности, астрономии, математике, музыке, этике и многому другому. Из его школы вышли выдающиеся политические и государственные деятели, историки, математики и астрономы. Это был не только учитель, но и исследователь. Исследователями становились и его ученики. Пифагор развил теорию музыки и акустики, создав знаменитую «пифагорейскую гамму» и проведя основополагающие эксперименты по изучению музыкальных тонов: найденные соотношения он выразил на языке математики. В Школе Пифагора впервые высказана догадка о шарообразности Земли. Мысль о том, что движение небесных тел подчиняется определённым математическим соотношениям, идеи «гармонии мира» и «музыки сфер», впоследствии приведшие к революции в астрономии, впервые появились именно в Школе Пифагора.
Многое сделал учёный и в геометрии. Доказанная Пифагором знаменитая теорема носит его имя. Достаточно глубоко исследовал Пифагор и математические отношения, закладывая тем самым основы теории пропорций. Особенное внимание он уделял числам и их свойствам, стремясь познать смысл и природу вещей. Посредством чисел он пытался даже осмыслить такие вечные категории бытия, как справедливость, смерть, постоянство, мужчина, женщина и прочее.
Пифагорейцы полагали, что все тела состоят из мельчайших частиц — «единиц бытия», которые в различных сочетаниях соответствуют различным геометрическим фигурам. Число для Пифагора было и материей, и формой Вселенной. Из этого представления вытекал и основной тезис пифагорейцев: «Все вещи — суть числа». Но поскольку числа выражали «сущность» всего, то и объяснять явления природы следовало только с их помощью. Пифагор и его последователи своими работами заложили основу очень важной области математики — теории чисел.
Все числа пифагорейцы разделяли на две категории — чётные и нечётные, что характерно и для некоторых других древних цивилизаций.
Позднее выяснилось, что пифагорейские «чётное — нечётное», «правое — левое» имеют глубокие и интересные следствия в кристаллах кварца, в структуре вирусов и ДНК, в знаменитых опытах Пастера с поляризацией винной кислоты, в нарушении чётности элементарных частиц и других теориях.
Не чужда была пифагорейцам и геометрическая интерпретация чисел. Они считали, что точка имеет одно измерение, линия — два, плоскость — три, объём — четыре измерения.
Десятка может быть выражена суммой первых четырёх чисел (1+2+3+4=10), где единица — выражение точки, двойка — линии и одномерного образа, тройка — плоскости и двумерного образа, четвёрка — пирамиды, то есть трёхмерного образа. Ну чем не четырёхмерная Вселенная Эйнштейна?
При суммировании всех плоских геометрических фигур — точки, линии и плоскости — пифагорейцы получали совершенную, божественную шестёрку.
Справедливость и равенство пифагорейцы видели в квадрате числа. Символом постоянства у них было число девять, поскольку все кратные девяти числа имеют сумму цифр опять-таки девять. Число восемь у пифагорейцев символизировало смерть, так как кратные восьми имеют уменьшающуюся сумму цифр.
Пифагорейцы считали чётные числа женскими, а нечётные мужскими. Нечётное число — оплодотворяющее и, если его сочетать с чётным, оно возобладает; кроме того, если разлагать чётное и нечётное надвое, то чётное, как женщина, оставляет в промежутке пустое место, между двумя частями. Поэтому и считают, что одно число свойственно женщине, а другое мужчине. Символ брака у пифагорейцев состоял из суммы мужского, нечётного числа три и женского, чётного числа два. Брак — это пятёрка, равная трём плюс два. По той же причине прямоугольный треугольник со сторонами три, четыре, пять был назван ими «фигура невесты».
Четыре числа, составляющие тетраду — один, два, три, четыре — имеют прямое отношение к музыке: они задают все известные консонантные интервалы — октаву (1:2), квинту (2:3) и кварту (3:4). Иными словами, декада воплощает не только геометрически-пространственную, но и музыкально-гармоническую полноту космоса. Среди свойств десятки отметим ещё и то, что в неё входит равное количество простых и составных чисел, а также столько же чётных, сколько и нечётных.
Сумма чисел, входящих в тетраду, равна десяти, именно поэтому десятка считалась у пифагорейцев идеальным числом и символизировала Вселенную. Поскольку число десять — идеальное, рассуждали они, на небе должно быть ровно десять планет. Надо заметить, что тогда были известны лишь Солнце, Земля и пять планет.
Знаменитая тетрада, состоящая из четырёх чисел, повлияла через пифагорейцев на Платона, который придавал особое значение четырём материальным элементам: земле, воздуху, огню и воде. Пифагорейцы знали также совершенные и дружественные числа. Совершенным называлось число, равное сумме своих делителей. Дружественные — числа, каждое из которых — сумма собственных делителей другого числа. В древности числа такого рода символизировали дружбу, отсюда и название.
Кроме чисел, вызывавших восхищение и преклонение, у пифагорейцев были и так называемые нехорошие числа. Это числа, которые не обладали никакими достоинствами, а ещё хуже, если такое число было окружено «хорошими» числами. Примером тому может служить знаменитое число тринадцать — чёртова дюжина или число семнадцать, вызывавшее особое отвращение у пифагорейцев.
Попытку Пифагора и его школы связать реальный мир с числовыми отношениями нельзя считать неудачной, поскольку в процессе изучения природы пифагорейцы наряду с робкими, наивными и порой фантастическими представлениями выдвинули и рациональные способы познания тайн Вселенной. Сведение астрономии и музыки к числу дало возможность более поздним поколениям учёных понять мир ещё глубже.
После смерти Пифагора в Метапонте (Южная Италия), куда он бежал по окончании восстания в Кротоне, его ученики обосновались в разных городах Великой Греции и организовали там пифагорейские общества.
В новое время, особенно благодаря бурному развитию естествознания, астрономии и математики, идеи Пифагора о мировой гармонии приобретают новых поклонников. Великие Коперник и Кеплер, знаменитый художник и геометр Дюрер, гениальный Леонардо да Винчи, английский астроном Эддингтон, экспериментально подтвердивший в 1919 году теорию относительности, и многие другие учёные и философы продолжают находить в научно-философском наследии Пифагора необходимое основание для установления закономерностей нашего мира.
ГИППОКРАТ
(ок. 460 — ок. 370 до н. э.)
Каждый врач, начиная свой профессиональный путь, непременно вспоминает Гиппократа. Когда он получает диплом, то произносит клятву, освящённую его именем.
Кроме другого греческого врача — Галена, жившего несколько позже Гиппократа, никто другой не смог оказать такого влияния на становление европейской медицины.
Гиппократ родился на острове Кос за 460 лет до нашей эры. Цивилизация и язык этого колонизованного дорийцами острова были ионийскими. Гиппократ принадлежал к роду Асклепиадов — корпорации врачей, притязавшей на то, что она ведёт своё происхождение от Асклепия, великого врача гомеровских времён (Асклепия стали считать богом только после Гомера). У Асклепиадов чисто человеческие медицинские познания передавались от отца к сыну, от учителя к ученику. Сыновья Гиппократа, его зять и многочисленные ученики были врачами.
Корпорация Асклепиадов, которую также именуют Косской школой, сохраняла в V веке до нашей эры, как и всякая культурная корпорация того времени, чисто религиозные формы и обычаи; так, например, у них была принята клятва, тесно связывавшая учеников с учителем, с собратьями по профессии. Однако этот религиозный характер корпорации, если он и требовал условных норм поведения, ни в чём не ограничивал поисков истины, которые оставались строго научными. Первоначальное медицинское образование Гиппократ получил от отца — врача Гераклида — и других врачей острова, затем с целью научного усовершенствования в молодости много путешествовал и изучил медицину в разных странах по практике местных врачей и по обетным таблицам, которые всюду вывешивались в стенах храмов Эскулапа.
История его жизни малоизвестна; существуют предания и рассказы, относящиеся к его биографии, но они носят легендарный характер. Имя Гиппократа, подобно Гомеру, сделалось впоследствии собирательным именем, и многие сочинения из примерно семидесяти приписываемых ему, как выяснено в новейшее время, принадлежат другим авторам, преимущественно его сыновьям, врачам Фессалу и Дракону, и зятю Полибу. Гален признавал за Гиппократом подлинными 11, Галлер — 18, а Ковнер — несомненно подлинными только 8 сочинений из Гиппократова кодекса.
Это трактаты — «О ветрах», «О воздухах, водах и местностях», «Прогностика», «О диете при острых болезнях», первая и третья книги «Эпидемий», «Афоризмы» (первые четыре раздела), наконец — хирургические трактаты «О суставах» и «О переломах», являющиеся шедеврами «Сборника».
К этому списку главных работ нужно будет добавить несколько сочинений этического направления: «Клятва», «Закон», «О враче», «О благоприличном поведении», «Наставления», которые в конце V и начале IV века до нашей эры превратят научную медицину Гиппократа в медицинский гуманизм.
Во времена Гиппократа верили, что болезни насылаются злыми духами или с помощью колдовства. Поэтому сам его подход к причинам болезней был новаторским. Он полагал, что болезни людям посылают не боги, они возникают по разным, причём вполне естественным, причинам.
Великая заслуга Гиппократа заключается в том, что он первый поставил медицину на научные основы, выведя её из тёмного эмпиризма, и очистил от ложных философских теорий, зачастую противоречивших действительности, господствовавших над опытной, экспериментальной стороной дела. Смотря на медицину и философию как на две неразрывные науки, Гиппократ старался их и сочетать, и разделить, определяя каждой свои границы.
Во всех литературных произведениях ярко высвечивается гениальная наблюдательность Гиппократа и логичность умозаключений. Все выводы его основаны на тщательных наблюдениях и строго проверенных фактах, из обобщения которых как бы сами собою вытекали и заключения. Точное предсказание течения и исхода болезни, основанное на изучении аналогичных случаев и примеров, составило Гиппократу при жизни широкую славу. Последователи учения Гиппократа образовали так называемую Косскую школу, которая очень долгое время процветала и определяла направление современной медицины.
Сочинения Гиппократа содержат наблюдения над распространением болезней в зависимости от внешних влияний атмосферы, времён года, ветра, воды и их результат — физиологические действия указанных влияний на здоровый организм человека. В этих же сочинениях приведены и данные по климатологии разных стран, в последнем более обстоятельно изучены метеорологические условия одной местности острова и зависимость болезни от этих условий. Вообще Гиппократ делит причины болезней на два класса: общие вредные влияния со стороны климата, почвы, наследственности и личные — условия жизни и труда, питания (диеты), возраст и пр. Нормальное влияние на организм указанных условий вызывает и правильное смешение соков, что для него и есть здоровье.
В этих сочинениях в первую очередь поражает неутомимая жажда познания. Врач, прежде всего, приглядывается, и глаз у него острый. Он расспрашивает и делает заметки. Обширное собрание из семи книг «Эпидемий» представляет собой не что иное, как ряд заметок, сделанных врачом у изголовья больного. В них изложены случаи, обнаруженные в процессе врачебного обхода и ещё не систематизированные. В этот текст нередко вкраплено какое-нибудь общее соображение, не касающееся изложенных рядом фактов, словно врач записал мимоходом одну из мыслей, которыми голова его занята беспрерывно.
Вот одна из этих пытливых мыслей коснулась вопроса о том, как надо осматривать больного, и тут же возникает окончательное, всё открывающее, точное слово, показывающее гораздо больше, чем простое наблюдение, и рисующее нам метод мышления учёного: «Осмотр тела — целое дело: он требует знания, слуха, обоняния, осязания, языка, рассуждения».
А вот ещё рассуждение об осмотре больного из первой книги «Эпидемий»: «Что касается до всех тех обстоятельств при болезнях, на основании которых должно устанавливать диагноз, то всё это узнаём из общей природы всех людей и собственной всякого человека, из болезни и из больного, из всего того, что предписывается, и из того, кто предписывает, ибо и от этого больные или лучше, или тяжелее себя чувствуют; кроме того, из общего и частного состояния небесных явлений и всякой страны, из привычки, из образа питания, из рода жизни, из возраста каждого больного, из речей больного, нравов, молчания, мыслей, сна, отсутствия сна, из сновидений, какие они и когда появляются, из подёргиваний, из зуда, из слёз, из пароксизмов, из извержений, из мочи, из мокроты, из рвоты. Должно также смотреть на перемены в болезнях, из каких в какие происходят, и на отложения, ведущие к гибели или разрушению, далее — пот, озноб, похолодание тела, кашель, чиханье, икота, вдохи, отрыжки, ветры беззвучные или с шумом, истечения крови, геморрои. Исходя из всех этих признаков и того, что через них происходит, — следует вести исследование».
Следует отметить обширный круг требований. При осмотре врач принимает во внимание не только состояние больного в данный момент, но и прежние болезни и последствия, которые они могли оставить, он считается с образом жизни больного и климатом места обитания. Он не забывает о том, что, поскольку больной такой же человек, как и все остальные, для его познания надо познать и других людей; он исследует его мысли. Даже «умолчания» больного служат для него указанием! Задача непосильная, в которой запутался бы любой ум, лишённый широты.
Как сказали бы сегодня — эта медицина отчётливо психосоматическая. Скажем проще: это медицина всего человека (тела и души), и связана она с его средой и образом жизни и с его прошлым. Последствия этого широкого подхода отражаются на лечении, которое будет в свою очередь требовать от больного, чтобы он, под руководством врача, весь — душой и телом — участвовал в своём выздоровлении.
Строго наблюдая за течением болезней, он придавал серьёзное значение различным периодам болезней, особенно лихорадочных, острых, устанавливая определённые дни для кризиса, перелома болезни, когда организм, по его учению, сделает попытку освободиться от несваренных соков.
В других сочинениях — «О суставах» и «О переломах» подробно описываются операции и хирургические вмешательства. Из описаний Гиппократа явствует, что хирургия в глубокой древности находилась на очень высоком уровне; употреблялись инструменты и разные приёмы перевязок, применяющиеся и в медицине нашего времени. В сочинении «О диете при острых болезнях» Гиппократ положил начало рациональной диетологии и указал на необходимость питать больных, даже лихорадочных (что впоследствии было забыто), и с этой целью установил диеты применительно к формам болезней — острых, хронических, хирургических и т. д.
Гиппократ при жизни познал высоты славы. Платон, который был моложе его на одно поколение, но его современником в широком смысле этого слова, сравнивая в одном из своих диалогов медицину с другими искусствами, проводит параллель между Гиппократом с Коса и самыми великими ваятелями его времени — Поликлетом из Аргоса и Фидием из Афин.
Умер Гиппократ около 370 года до нашей эры в Лариссе, в Фессалии, где ему и поставлен памятник.
ЕВКЛИД
(ок. 365–300 до н. э.)
О жизни этого учёного почти ничего не известно. До нас дошли только отдельные легенды о нём. Первый комментатор «Начал» Прокл (V век нашей эры) не мог указать, где и когда родился и умер Евклид. По Проклу, «этот учёный муж» жил в эпоху царствования Птолемея I. Некоторые биографические данные сохранились на страницах арабской рукописи XII века: «Евклид, сын Наукрата, известный под именем „Геометра“, учёный старого времени, по своему происхождению грек, по местожительству сириец, родом из Тира».
Одна из легенд рассказывает, что царь Птолемей решил изучить геометрию. Но оказалось, что сделать это не так-то просто. Тогда он призвал Евклида и попросил указать ему лёгкий путь к математике. «К геометрии нет царской дороги», — ответил ему учёный. Так в виде легенды дошло до нас это ставшее крылатым выражение.
Царь Птолемей I, чтобы возвеличить своё государство, привлекал в страну учёных и поэтов, создав для них храм муз — Мусейон. Здесь были залы для занятий, ботанический и зоологический сады, астрономический кабинет, астрономическая башня, комнаты для уединённой работы и главное — великолепная библиотека. В числе приглашённых учёных оказался и Евклид, который основал в Александрии — столице Египта — математическую школу и написал для её учеников свой фундаментальный труд.
Именно в Александрии Евклид основывает математическую школу и пишет большой труд по геометрии, объединённый под общим названием «Начала» — главный труд своей жизни. Полагают, что он был написан около 325 года до нашей эры.
Предшественники Евклида — Фалес, Пифагор, Аристотель и другие много сделали для развития геометрии. Но всё это были отдельные фрагменты, а не единая логическая схема.
Как современников, так и последователей Евклида привлекала систематичность и логичность изложенных сведений. «Начала» состоят из тринадцати книг, построенных по единой логической схеме. Каждая из тринадцати книг начинается определением понятий (точка, линия, плоскость, фигура и т. д.), которые в ней используются, а затем на основе небольшого числа основных положений (5 аксиом и 5 постулатов), принимаемых без доказательства, строится вся система геометрии.
В то время развитие науки и не предполагало наличия методов практической математики. Книги I–IV охватывали геометрию, их содержание восходило к трудам пифагорейской школы. В книге V разрабатывалось учение о пропорциях, которое примыкало к Евдоксу Книдскому. В книгах VII–IX содержалось учение о числах, представляющее разработки пифагорейских первоисточников. В книгах X–XII содержатся определения площадей в плоскости и пространстве (стереометрия), теория иррациональности (особенно в X книге); в XIII книге помещены исследования правильных тел, восходящие к Теэтету.
«Начала» Евклида представляют собой изложение той геометрии, которая известна и поныне под названием евклидовой геометрии. Она описывает метрические свойства пространства, которое современная наука называет евклидовым пространством. Евклидово пространство является ареной физических явлений классической физики, основы которой были заложены Галилеем и Ньютоном. Это пространство пустое, безграничное, изотропное, имеющее три измерения. Евклид придал математическую определённость атомистической идее пустого пространства, в котором движутся атомы. Простейшим геометрическим объектом у Евклида является точка, которую он определяет как то, что не имеет частей. Другими словами, точка — это неделимый атом пространства.
Бесконечность пространства характеризуется тремя постулатами:
«От всякой точки до всякой точки можно провести прямую линию». «Ограниченную прямую можно непрерывно продолжить по прямой». «Из всякого центра и всяким раствором может быть описан круг».
Учение о параллельных и знаменитый пятый постулат («Если прямая, падающая на две прямые, образует внутренние и по одну сторону углы меньшие двух прямых, то продолженные неограниченно эти две прямые встретятся с той стороны, где углы меньше двух прямых») определяют свойства евклидова пространства и его геометрию, отличную от неевклидовых геометрий.
Обычно о «Началах» говорят, что после Библии это самый популярный написанный памятник древности. Книга имеет свою, весьма примечательную историю. В течение двух тысяч лет она являлась настольной книгой школьников, использовалась как начальный курс геометрии. «Начала» пользовались исключительной популярностью, и с них было снято множество копий трудолюбивыми писцами в разных городах и странах. Позднее «Начала» с папируса перешли на пергамент, а затем на бумагу. На протяжении четырёх столетий «Начала» публиковались 2500 раз: в среднем выходило ежегодно 6–7 изданий. До XX века книга считалась основным учебником по геометрии не только для школ, но и для университетов.
«Начала» Евклида были основательно изучены арабами, а позднее европейскими учёными. Они были переведены на основные мировые языки. Первые подлинники были напечатаны в 1533 году в Базеле. Любопытно, что первый перевод на английский язык, относящийся к 1570 году, был сделан Генри Биллингвеем, лондонским купцом.
Евклиду принадлежат частично сохранившиеся, частично реконструированные в дальнейшем математические сочинения. Именно он ввёл алгоритм для получения наибольшего общего делителя двух произвольно взятых натуральных чисел и алгоритм, названный «решетом Эратосфена», — для нахождения простых чисел до данного числа.
Евклид заложил основы геометрической оптики, изложенные им в сочинениях «Оптика» и «Катоптрика». Основное понятие геометрической оптики — прямолинейный световой луч. Евклид утверждал, что световой луч исходит из глаза (теория зрительных лучей), что для геометрических построений не имеет существенного значения. Он знает закон отражения и фокусирующее действие вогнутого сферического зеркала, хотя точного положения фокуса определить ещё не может. Во всяком случае в истории физики имя Евклида как основателя геометрической оптики заняло надлежащее место.
У Евклида мы встречаем также описание монохорда — однострунного прибора для определения высоты тона струны и её частей. Полагают, что монохорд придумал Пифагор, а Евклид только описал его («Деление канона», III век до нашей эры).
Евклид со свойственной ему страстью занялся числительной системой интервальных соотношений. Изобретение монохорда имело значение для развития музыки. Постепенно вместо одной струны стали использоваться две или три. Так было положено начало созданию клавишных инструментов, сначала клавесина, потом пианино. А первопричиной появления этих музыкальных инструментов стала математика.
Конечно, все особенности евклидова пространства были открыты не сразу, а в результате многовековой работы научной мысли, но отправным пунктом этой работы послужили «Начала» Евклида. Знание основ евклидовой геометрии является ныне необходимым элементом общего образования во всём мире.
АРХИМЕД
(287–212 до н. э.)
Архимед родился в 287 году до нашей эры в греческом городе Сиракузы, где и прожил почти всю свою жизнь. Отцом его был Фидий, придворный астроном правителя города Гиерона. Учился Архимед, как и многие другие древнегреческие учёные, в Александрии, где правители Египта Птолемеи собрали лучших греческих учёных и мыслителей, а также основали знаменитую, самую большую в мире библиотеку.
После учёбы в Александрии Архимед вновь вернулся в Сиракузы и унаследовал должность своего отца.
В теоретическом отношении труд этого великого учёного был ослепляюще многогранным. Основные работы Архимеда касались различных практических приложений математики (геометрии), физики, гидростатики и механики. В сочинении «Параболы квадратуры» Архимед обосновал метод расчёта площади параболического сегмента, причём сделал это за две тысячи лет до открытия интегрального исчисления. В труде «Об измерении круга» Архимед впервые вычислил число «пи» — отношение длины окружности к диаметру — и доказал, что оно одинаково для любого круга. Мы до сих пор пользуемся придуманной Архимедом системой наименования целых чисел.
Математический метод Архимеда, связанный с математическими работами пифагорейцев и с завершившей их работой Эвклида, а также с открытиями современников Архимеда, подводил к познанию материального пространства, окружающего нас, к познанию теоретической формы предметов, находящихся в этом пространстве, формы совершенной, геометрической формы, к которой предметы более или менее приближаются и законы которой необходимо знать, если мы хотим воздействовать на материальный мир.
Но Архимед знал также, что предметы имеют не только форму и измерение: они движутся, или могут двигаться, или остаются неподвижными под действием определённых сил, которые двигают предметы вперёд или приводят в равновесие. Великий сиракузец изучал эти силы, изобретая новую отрасль математики, в которой материальные тела, приведённые к их геометрической форме, сохраняют в то же время свою тяжесть. Эта геометрия веса и есть рациональная механика, это статика, а также гидростатика, первый закон которой открыл Архимед (закон, носящий имя Архимеда), согласно которому на тело, погружённое в жидкость, действует сила, равная весу вытесненной им жидкости.
Однажды приподнявши ногу в воде, Архимед констатировал с удивлением, что в воде нога стала легче. «Эврика! Нашёл!» — воскликнул он, выходя из своей ванны. Анекдот занятный, но, переданный таким образом, он неточен. Знаменитое «Эврика!» было произнесено не в связи с открытием закона Архимеда, как это часто говорят, но по поводу закона удельного веса металлов — открытия, которое также принадлежит сиракузскому учёному и обстоятельные детали которого находим у Витрувия.
Рассказывают, что однажды к Архимеду обратился Гиерон, правитель Сиракуз. Он приказал проверить, соответствует ли вес золотой короны весу отпущенного на неё золота. Для этого Архимед сделал два слитка: один из золота, другой из серебра, каждый такого же веса, что и корона. Затем поочерёдно положил их в сосуд с водой, отметил, на сколько поднялся её уровень. Опустив в сосуд корону, Архимед установил, что её объём превышает объём слитка. Так и была доказана недобросовестность мастера.
Любопытен отзыв Цицерона, великого оратора древности, увидевшего «архимедову сферу» — модель, показывающую движение небесных светил вокруг Земли: «Этот сицилиец обладал гением, которого, казалось бы, человеческая природа не может достигнуть».
И, наконец, Архимед был не только великим учёным, он был, кроме того, человеком, страстно увлечённым механикой. Он проверяет и создаёт теорию пяти механизмов, известных в его время и именуемых «простые механизмы». Это — рычаг («Дайте мне точку опоры, — говорил Архимед, — и я сдвину Землю»), клин, блок, бесконечный винт и лебёдка. Именно Архимеду часто приписывают изобретение бесконечного винта, но возможно, что он лишь усовершенствовал гидравлический винт, который служил египтянам при осушении болот.
Впоследствии эти механизмы широко применялись в разных странах мира. Интересно, что усовершенствованный вариант водоподъёмной машины можно было встретить в начале XX века в монастыре, находившемся на Валааме, одном из северных российских островов. Сегодня же архимедов винт используется, к примеру, в обыкновенной мясорубке.
Изобретение бесконечного винта привело его к другому важному изобретению, пусть даже оно и стало обычным, — к изобретению болта, сконструированного из винта и гайки.
Тем своим согражданам, которые сочли бы ничтожными подобные изобретения, Архимед представил решительное доказательство противного в тот день, когда он, хитроумно приладив рычаг, винт и лебёдку, нашёл средство, к удивлению зевак, спустить на воду тяжёлую галеру, севшую на мель, со всем её экипажем и грузом.
Ещё более убедительное доказательство он дал в 212 году до нашей эры. При обороне Сиракуз от римлян во время второй Пунической войны Архимед сконструировал несколько боевых машин, которые позволили горожанам отражать атаки превосходящих в силе римлян в течение почти трёх лет. Одной из них стала система зеркал, с помощью которой египтяне смогли сжечь флот римлян. Этот его подвиг, о котором рассказали Плутарх, Полибий и Тит Ливий, конечно, вызвал большее сочувствие у простых людей, чем вычисление числа «пи» — другой подвиг Архимеда, весьма полезный в наше время для изучающих математику.
Архимед погиб во время осады Сиракуз: его убил римский воин в тот момент, когда учёный был поглощён поисками решения поставленной перед собой проблемы.
Любопытно, что, завоевав Сиракузы, римляне так и не стали обладателями трудов Архимеда. Только через много веков они были обнаружены европейскими учёными. Вот почему Плутарх, одним из первых описавший жизнь Архимеда, упомянул с сожалением, что учёный не оставил ни одного сочинения.
Плутарх пишет, что Архимед умер в глубокой старости. На его могиле была установлена плита с изображением шара и цилиндра. Её видел Цицерон, посетивший Сицилию через 137 лет после смерти учёного. Только в XVI–XVII веках европейские математики смогли, наконец, осознать значение того, что было сделано Архимедом за две тысячи лет до них.
Он оставил многочисленных учеников. На новый путь, открытый им, устремилось целое поколение последователей, энтузиастов, которые горели желанием, как и учитель, доказать свои знания конкретными завоеваниями.
Первым по времени из этих учеников был александриец Ктесибий, живший во II веке до нашей эры. Изобретения Архимеда в области механики были в полном ходу, когда Ктесибий присоединил к ним изобретение зубчатого колеса.
НИКОЛАЙ КОПЕРНИК
(1473–1543)
Николай Коперник родился 19 февраля 1473 года в польском городе Торуни в семье купца, приехавшего из Германии. Он был четвёртым ребёнком в семье. Начальное образование он получил, скорее всего, в расположенной неподалёку от дома школе при костёле св. Яна. До десяти лет рос в обстановке благополучия и довольства. Беззаботное детство закончилось внезапно и довольно рано. Едва Николаю минуло десять лет, как «моровое поветрие» — эпидемия чумы, частый гость и грозный бич человечества в то время, посетило Торунь, и одной из первых его жертв оказался Николай Коперник-отец. Заботы об образовании и дальнейшей судьбе племянника принял на себя Лукаш Ваченроде, брат матери.
Во второй половине октября 1491 года Николай Коперник вместе с братом Анджеем прибыл в Краков и записался на факультет искусств местного университета. По его окончании в 1496 году Коперник отправился в длительное путешествие в Италию.
Осенью Николай вместе с братом Анджеем оказался в Болонье, входившей тогда в Папскую область и славившейся своим университетом. В то время здесь особой популярностью пользовался юридический факультет с отделениями гражданского и канонического, т. е. церковного, права, и на этот факультет записался Николай.
Именно в Болонье у Коперника возник интерес к астрономии, определивший его научные интересы. Вечером 9 марта 1497 года вместе с астрономом Доменико Марией Новара Николай провёл своё первое научное наблюдение. После него стало ясно, что расстояние до Луны, когда она находится в квадратуре, примерно такое же, как и во время ново- или полнолуния. Несоответствие теории Птолемея обнаруженным фактам забавляло задуматься…
В первые месяцы 1498 года Николай Коперник был утверждён заочно в сане каноника Фромборкского капитула, годом позже каноником того же капитула стал и Анджей Коперник. Однако сам факт получения этих должностей не уменьшил денежных затруднений братьев: жизнь в Болонье, привлекавшей к себе множество богатых иностранцев, не отличалась дешевизной, и в октябре 1499 года Коперники оказались совсем без средств к существованию. Выручил их приехавший из Польши каноник Бернард Скультети, позже неоднократно встречавшийся на их жизненном пути.
Затем Николай на короткое время возвращается в Польшу, но всего через год вновь отправляется в Италию, где изучает медицину в Падуанском университете и получает степень доктора богословия в университете Феррары. На родину Коперник вернулся в конце 1503 года всесторонне образованным человеком. Он поселился сначала в городе Лидзбарке, а затем занял должность каноника во Фромборке — рыбачьем городке в устье Вислы.
Астрономические наблюдения, начатые Коперником в Италии, были продолжены, правда, в ограниченных размерах, в Лидзбарке. Но с особой интенсивностью он развернул их в Фромборке, несмотря на неудобства из-за большой широты этого места, что затрудняло наблюдения планет, и из-за частых туманов с Вислинского залива, значительной облачности и пасмурного неба над этой северной местностью.
До изобретения телескопа было ещё далеко, не существовало ещё и наилучших для дотелескопической астрономии инструментов Тихо Браге, с помощью которых точность астрономических наблюдений была доведена до одной-двух минут. Наиболее известным прибором, которым пользовался Коперник, был трикветрум, параллактический инструмент. Второй прибор, употреблявшийся Коперником для определения угла наклона эклиптики, «гороскопий», солнечные часы, разновидность квадранта.
Несмотря на очевидные трудности, в «Малом комментарии», написанном приблизительно в 1516 году, Коперник уже дал предварительное изложение своего учения, вернее, тогда ещё своих гипотез. Он не счёл нужным приводить в нём математические доказательства, поскольку они предназначались для более обширного сочинения.
3 ноября 1516 года Николай Коперник был избран на должность управляющего владений капитула в Ольштынском и Пененжненском округах. Осенью 1519 года полномочия Коперника в Ольштыне истекли, и он возвратился в Фромборк, но отдаться астрономическим наблюдениям для проверки своих гипотез и на этот раз по-настоящему не смог. Шла война с крестоносцами.
В самый разгар войны, в начале ноября 1520 года, Коперник вновь избирается администратором владений капитула в Ольштыне и Пененжно. К тому времени Коперник оказался старшим не только в Ольштыне, но и во всей Вармии — епископ и почти все члены капитула, покинув Вармию, отсиживались в безопасных местах. Взяв на себя командование немногочисленным гарнизоном Ольштына, Коперник принял меры к укреплению обороны замка-крепости, позаботившись об установке орудий, создании запаса боеприпасов, провианта и воды. Коперник, неожиданно проявив решительность и недюжинный воинский талант, сумел отстоять Ольштын от неприятеля.
Личное мужество и решительность не остались незамеченными — вскоре после заключения перемирия в апреле 1521 года Коперник назначается комиссаром Вармии. В феврале 1523 года, до избрания нового епископа, Коперник избирается генеральным администратором Вармии — это высшая должность, которую ему приходилось занимать. Осенью того же года, после выбора епископа, он назначается канцлером капитула. Лишь после 1530 года административная деятельность Коперника несколько сузилась.
Тем не менее именно на двадцатые годы приходится значительная часть астрономических результатов Коперника. Удалось провести многие наблюдения. Так, около 1523 года, наблюдая за планетами в момент противостояния, т. е. когда планета находится в противоположном Солнцу пункте небесной сферы, Коперник совершил важное открытие: он опроверг мнение, будто положение планетных орбит в пространстве остаётся неподвижным. Линия апсид — прямая, соединяющая точки орбиты, в которых планета наиболее близка к Солнцу и наиболее удалена от него, меняет своё положение по сравнению с наблюдавшимся за 1300 лет до того и зафиксированном в «Альмагесте» Птолемея.
Но главное, к началу тридцатых годов работа над созданием новой теории и её оформлением в его труде «Об обращениях небесных сфер» была в основном закончена. К тому времени почти полтора тысячелетия просуществовала система устройства мира, предложенная древнегреческим учёным Клавдием Птолемеем. Она заключалась в том, что Земля неподвижно покоится в центре Вселенной, а Солнце и другие планеты вращаются вокруг неё. Теория Птолемея не позволяла объяснить многие явления, хорошо известные астрономам, в частности петлеобразное движение планет по видимому небосводу. Но её положения считались незыблемыми, поскольку хорошо согласовались с учением католической церкви.
Задолго до Коперника древнегреческий учёный Аристарх утверждал, что Земля движется вокруг Солнца. Но он ещё не мог экспериментально подтвердить своё учение.
Наблюдая движение небесных тел, Коперник пришёл к выводу, что теория Птолемея неверна. После тридцати лет упорнейшего труда, долгих наблюдений и сложных математических расчётов он убедительно доказал, что Земля — это только одна из планет и что все планеты обращаются вокруг Солнца. Правда, Коперник всё же считал, что звёзды неподвижны и находятся на поверхности огромной сферы, на огромном расстоянии от Земли. Это было связано с тем, что в то время ещё не было таких мощных телескопов, с помощью которых можно наблюдать небо и звёзды.
Открыв, что Земля и планеты — спутники Солнца, Коперник смог объяснить видимое движение Солнца по небосводу, странную запутанность в движении некоторых планет, а также видимое вращение небесного свода. Коперник считал, что мы воспринимаем движение небесных тел так же, как и перемещение различных предметов на Земле, когда сами находимся в движении. Когда мы плывём в лодке по поверхности реки, то кажется, что лодка и мы в ней неподвижны, а берега плывут в обратном направлении. Точно так же наблюдателю, находящемуся на Земле, кажется, что Земля неподвижна, а Солнце движется вокруг неё. На самом же деле это Земля движется вокруг Солнца и в течение года совершает полный оборот по своей орбите.
В двадцатые же годы Коперник приобрёл славу искусного врача. Знания, полученные им в Падуе, он пополнял в течение всей жизни, регулярно знакомясь с новинками медицинской литературы. Слава выдающегося медика была заслуженной — Копернику удалось многих пациентов избавить от тяжёлых и трудноизлечимых недугов. А среди его пациентов были все современные ему епископы Вармии, высокопоставленные лица Королевской и Герцогской Пруссии, Тидеман Гизе, Александр Скультети, многие каноники Вармийского капитула. Часто оказывал он помощь и простым людям. Несомненно, что рекомендации своих предшественников Коперник использовал творчески, тщательно следя за состоянием больных и пытаясь вникнуть в механизм воздействия прописанных им лекарств.
После 1531 года пошла на убыль его активность в делах капитула и его общественная деятельность, хотя ещё в 1541 году он выполнял обязанности председателя строительной кассы капитула. Сказывались долгие годы жизни. 60 лет — возраст, который в XVI веке считался уже достаточно преклонным. Но научная деятельность Коперника не прекращалась. Не прекращал он и врачебной практики, и слава его как искусного медика неуклонно возрастала.
В середине июля 1528 года, присутствуя в качестве представителя Фромборкского капитула на сеймике в Торуни, Коперник познакомился с известным тогда медальером и резчиком по металлу Матцем Шиллингом, переехавшим не так давно в Торунь из Кракова. Существует предположение, что Коперник знал Шиллинга ещё по Кракову, более того, по материнской линии он состоял с ним в отдалённом родстве.
В доме Шиллинга Коперник встретил его дочь — молодую и красивую Анну, и вот вскоре, составляя одну из своих астрономических таблиц, в заглавии столбца, отведённого планете Венере, Коперник знак этой планеты обводит контуром из листьев плюща — фамильной маркой Шиллингов, помещавшейся на всех монетах и медалях, чеканившихся отцом Анны…
Будучи каноником, Коперник должен был соблюдать целибат — обет безбрачия. Но с годами Коперник чувствовал себя всё более одиноким, всё явственнее ощущал потребность в близком и преданном существе, и вот встреча с Анной…
Шли годы. К присутствию Анны в доме Коперника, казалось, привыкли. Однако последовал донос только что выбранному епископу. Во время болезни Дантиск вызывает к себе доктора Николая и в беседе с ним как бы невзначай замечает, что не пристало Копернику иметь при себе столь молодую и столь дальнюю родственницу — следует подыскать менее молодую и состоящую в более тесном родстве.
И Коперник вынужден «принимать меры». Анна в скором времени переселяется в свой дом. А потом ей пришлось уехать и из Фромборка. Это, несомненно, омрачило последние годы жизни Николая Коперника.
В мае 1542 года в Виттенберге выходит из печати книжка Коперника «О сторонах и углах треугольников как плоских, так и сферических» с приложением подробных таблиц синусов и косинусов.
Но учёный не дожил до того времени, когда книга «О вращениях небесных сфер» распространилась по всему свету. Он был при смерти, когда друзья принесли ему первый экземпляр его книги, отпечатанной в одной из нюрнбергских типографий. Коперник скончался 24 мая 1543 года.
Деятели церкви не сразу поняли, какой удар по религии наносит книга Коперника. Некоторое время его труд свободно распространялся среди учёных. Только тогда, когда у Коперника появились последователи, его учение было объявлено ересью, а книга внесена в «Индекс» запрещённых книг. Лишь в 1835 году папа римский исключил книгу Коперника из него и тем как бы признал существование его учения в глазах церкви.
ТЕОФРАСТ ПАРАЦЕЛЬС
(1493–1541)
В XVI веке на небосклоне западной науки между алхимией и медициной возникает новая фигура: Парацельс — удивительный врач и алхимик, хирург, задира и дуэлянт, одинаково хорошо владеющий как ланцетом, так и шпагой.
«Настоящая цель химии заключается не в изготовлении золота, а в приготовлении лекарств!» — эти слова определили жизненное кредо Парацельса.
Филипп Ауреол Теофраст Бомбаст фон Гогенгейм, по прозванию Парацельс, родился 10 ноября 1493 года близ посёлка Эйнзидельн (кантон Швиц, Швейцария). По примеру своего отца Парацельс довольно рано начал изучать медицину в Германии, Франции и Италии.
Уже в годы учения Парацельс заинтересовался химией. Он не только делал опыты, но и работал на рудниках и горных заводах. Но самое большое значение Парацельс придавал применению химии в медицине, что привело к возникновению ятрохимии.
Когда Парацельс был студентом, в университетах химия как отдельная специальность не преподавалась. Теоретические представления о химических явлениях рассматривались в курсе философии в свете общих представлений о возникновении и исчезновении веществ. Экспериментальной же работой в области химии занимались многочисленные аптекари и алхимики. Последние, делая опыты по «трасмутации» металлов, не только открывали новые способы получения различных веществ, но и развивали натурфилософские учения древнегреческих философов Аристотеля, Эмпедокла, Левкиппа, Демокрита. Согласно этим учениям, все вещества в природе состоят из более простых частей, называемых элементами. Такими элементами, по Левкиппу и Демокриту, были атомы — мельчайшие частицы бескачественной первичной материи, различные только по величине и форме.
В 1515 году Теофраст получил во Флоренции степень доктора медицины. Но приобретённые знания не удовлетворяли Парацельса. Наблюдая, как часто оказываются бессильными у постели больного врачи с их знаниями, довольно мало изменившимися со времён античности, Парацельс решил усовершенствовать эту область, введя в неё новые представления о болезнях и методы лечения больных. При создании новой системы медицины Парацельс опирался на знания, полученные им во время путешествий по разным странам.
По его словам, он слушал лекции медицинских светил в крупнейших университетах, в медицинских школах Парижа и Монпелье, побывал в Италии и Испании. Был в Лиссабоне, потом отправился в Англию, переменил курс на Литву, забрёл в Польшу, Венгрию, Валахию, Хорватию. И повсюду прилежно и старательно выспрашивал и запоминал секреты искусства врачевания. Не только у докторов, но и у цирюльников, банщиков, знахарок. Он пытался узнать, как они ухаживают за больными, какие применяют средства.
Затем Парацельс практиковал, опробывая всё то, что узнал во время своих поисков. Служил некоторое время лекарем в армии датского короля Христиана, участвовал в его походах, работал фельдшером в нидерландском войске. Армейская практика дала ему богатейший материал.
В 1524 году Парацельс решил, наконец, прекратить странствия и поселиться в Зальцбурге; однако уже через год учёному пришлось срочно покинуть этот город, так как поддержка им борьбы крестьян против феодалов навлекла гнев городских властей.
1526 год учёный провёл в Страсбурге, а в следующем году он был приглашён на должность городского врача в крупный швейцарский торговый город Базель. Парацельсу удалось вылечить одного богача, которому не смогли помочь лучшие лекари города. Его пригласили занять кафедру медицины в Базельском университете. На первой же лекции он перед глазами изумлённых студентов сжёг сочинения Галена и Авиценны и заявил, что даже завязки его башмаков знают больше, чем эти древние мокротники.
В городском университете Парацельс впервые стал читать лекции студентам-медикам на немецком языке вместо традиционной латыни. Так новый профессор боролся против догматической медицины средневековья, тесно связанной с теологией.
Философские взгляды Парацельса, изложенные им во многих трудах, сводились к следующему: между природой и человеком должна существовать гармония. Необходимым условием создания разумного общественного строя являются совместный труд людей и их равноправное участие в пользовании материальными благами. В философских работах Парацельса приводятся также основные доводы против богословской, враждебной естествознанию идеологии средневековья, даётся резкая критика общественных отношений во времена феодализма и эпохи раннего капитализма.
В 1528 году Парацельсу пришлось тайком покинуть Базель, где ему угрожал суд за вольнодумство. Он вынужден скитаться в горных районах Ашенцелля, переходя из деревушки в деревушку, изредка врачуя крестьян.
Парацельс хотел остаться в Кольмаре, заняться врачебной практикой. Но задержался там всего на полгода. Он не мог смириться с невежеством, шарлатанством лиц, облачённых в докторские мантии, и в Кольмаре остался верен себе.
В Кольмаре о Парацельсе заговорили как об искуснейшем враче. Ему удавалось поднимать на ноги больных, которых другие врачи считали безнадёжными. Популярность его росла. Однако его независимое поведение, резкие суждения о собратьях по цеху, отказ от слепого преклонения перед авторитетами пришлись по нраву далеко не всем. К тому же Парацельс занимался алхимией, усердно изучал труды восточных магов и мистиков. Человек увлекающийся, пытливый, он проявлял интерес ко всему, где, как ему казалось, можно открыть что-то новое. Он заблуждался, нередко попадал в плен суеверных представлений, терпел неудачи, но продолжал поиски. Всё это давало пищу для разных домыслов о том, что Парацельс вступил в сношения с самим дьяволом. Положение усугублялось тем, что в Кольмаре продолжали сохранять свои позиции католики. Они-то ревностно следили за тем, чтобы никто не осмеливался выступать с суждениями, шедшими вразрез с установившимися представлениями. Только каноны, освящённые католической церковью, признавались действительными, любая попытка подвергнуть их пересмотру объявлялась кощунственной. В любую минуту Парацельсу могли предъявить обвинение в ереси и учинить над ним расправу.
Из Кольмара путь скитальца лежал в Эслинген, а потом Парацельс перебрался в Нюрнберг, где он надеялся издать свои сочинения. К тому времени он написал немало. В его дорожном багаже лежало несколько сот страниц сочинений. Записывал свои наблюдения, делал выводы, высказывал собственные суждения. Он был необычайно работоспособен. Сохранились свидетельства о том, что Парацельс порой проводил за письменным столом по нескольку дней кряду, почти без сна.
Наконец ему улыбнулось счастье. Одну за другой ему удалось издать четыре книги. Но затем неожиданно последовало решение городского магистрата о запрещении дальнейшего печатания его произведений. Причиной тому было требование профессоров и докторов медицинского факультета Лейпцигского университета, возмутившихся сочинениями Парацельса. Они не могли принять новшеств Парацельса, ибо находились во власти сложившихся представлений, которые воспринимались как истина.
И тогда в отчаянии он бросил всё и покинул Нюрнберг, направившись в Инсбрук, надеясь заняться, наконец, постоянной врачебной практикой, по которой изрядно истосковался. Но бургомистр не поверил, что появившийся в Инсбруке человек в оборванном платье и с грубыми, как у простого мужика, руками — врач. Он велел самозванцу покинуть город.
Случайно узнав, что в Штерцинге эпидемия чумы, Парацельс идёт в этот город. Обходя дома больных, приготовляя свои лекарства, он настойчиво пытался понять, в чём причины этого страшного заболевания, как можно предотвратить эпидемии, какими средствами следует лечить больных.
Но когда кончилась эпидемия, Парацельс оказался не нужен и в Штерцинге. Он вынужден был опять бродить по дорогам, меняя город за городом, надеясь, что в каком-нибудь из них городские власти всё-таки удостоят его вниманием. Но даже там, где власти были бы и не прочь пригласить Парацельса, решительно возражало католическое духовенство да и протестанты всегда считали Парацельса нежелательным лицом.
И вдруг ему неожиданно вновь улыбнулось счастье. В Ульме, а затем в Аугсбурге напечатали его труд «Большая хирургия». И эта книга сделала то, чего много лет добивался Парацельс. Она заставила заговорить о нём как о выдающемся медике.
Подобно алхимикам, Парацельс исходил из представления, что все вещества состоят из элементов, способных соединяться друг с другом. При разложении веществ элементы разъединяются. Но в отличие от алхимиков Парацельс подчеркнул вещественный характер трёх начал: «серы» — начала горючести, «ртути» — начала летучести, «соли» — начала огнепостоянства. Считая, что каждый из четырёх элементов Аристотеля должен состоять из этих начал, Парацельс писал: «Каждый элемент состоит из трёх начал: ртути, серы и соли».
Существенно новым в учении Парацельса было то, что он таким же образом рассматривал состав всех тел, включая и человеческий организм. Человек, считал Парацельс, образован духом, душой и телом. Нарушение взаимного равновесия главных элементов ведёт к болезни. Если в организме избыток серы, то человек заболевает лихорадкой или чумой. При избытке ртути наступает паралич. А слишком большое обилие солей вызывает расстройство желудка и водянку. Задача врача — выяснить отношение между основными элементами в теле больного и восстановить их равновесие.
Следовательно, это нарушенное равновесие можно восстановить при помощи определённых химических препаратов. Поэтому первоочередной задачей химии Парацельс считал поиск веществ, которые могли быть использованы как лекарственные средства. С этой целью он проверял действие на людей различных соединений меди, свинца, ртути, сурьмы, мышьяка. Особую славу приобрёл Парацельс, весьма успешно применяя ртутные препараты для лечения широко распространённого в то время сифилиса.
Парацельс много занимался химическими опытами. Он составлял лекарства, экспериментировал и диктовал результаты секретарю, который записывал их и переводил на латынь. Многие из его мыслей были перевраны при переводе, а потом ещё раз испорчены врагами.
Парацельса обвиняли в том, что «он превратил живые тела в химические лаборатории, где различные органы, подобно перегонным кубам, печам, ретортам, реактивам, растворяют, мацерируют (размачивают — Прим. авт.), возгоняют питательные вещества».
Сегодня бы сказали, что Парацельс моделировал интересующие его процессы. Его химическая модель жизнедеятельности организма была грубой, но материалистической и прогрессивной для своей эпохи.
Итак, после выхода книги положение доктора Парацельса счастливо переменилось. Его принимают в лучших домах, к нему обращаются знатные вельможи. Он лечит маршала королевства Богемии Иоганна фон Лейпника. В Вене его удостаивает вниманием сам король Фердинанд.
Получивший признание вечный скиталец использовал это для того, чтобы наверстать упущенное. Опять дни и ночи просиживает он за столом, записывая свои мысли, стремясь успеть поведать людям о том, что узнал за свою жизнь, поделиться с ними своим опытом. Он верит, что выработанные им приёмы лечения некоторых заболеваний, впервые введённые в лечебную практику лекарства, методика хирургических операций, которую он разработал, окажут немалую помощь медикам. Он словно чувствовал, что жизнь его клонится к закату. Годы скитаний, напряжённейшего труда, постоянной борьбы с недругами подорвали его организм.
Последнее его пристанище — Зальцбург. Наконец-то он может заняться врачебной практикой и писать труды, не заботясь о том, что завтра, быть может, ему придётся перебираться в другой город. У него есть свой маленький домик на окраине, есть кабинет, своя лаборатория. У него есть теперь всё, кроме одного — здоровья. Смертельная болезнь подстерегает его в один из сентябрьских дней 1541 года.
На могиле Парацельса в Зальцбурге поставили большой камень. Резчик высек на нём бесхитростную надпись: «Здесь погребён Филипп-Теофраст, превосходный доктор медицины, который тяжёлые раны, проказу, подагру, водянку и другие неизлечимые болезни тела идеальным искусством излечивал и завещал своё имущество разделить и пожертвовать беднякам. В 1541 году на 24 день сентября сменил он жизнь на смерть».
АНДРЕАС ВЕЗАЛИЙ
(1514–1564)
Андреас Везалий справедливо считается создателем современной анатомии и основателем школы анатомов. Он пользовался успехом и как врач-практик.
Андреас Везалий родился в 1514 году в Брюсселе в семье потомственных медиков. Врачами были его дед и прадед, а отец служил аптекарем при дворе императора Карла V. Интересы окружающих, несомненно, повлияли на интересы и стремления юного Везалия. Учился Андреас сначала в школе, а затем в университете города Лувена, где получил разностороннее образование, изучил греческий и латинский языки, благодаря чему мог знакомиться с трудами учёных уже в юные годы. Очевидно, он прочёл о медицине немало книг древних и современных ему учёных, так как труды его говорят о глубоких знаниях. Везалий самостоятельно из костей казнённого собрал полный скелет человека. Это было первое анатомическое пособие в Европе.
С каждым годом всё больше проявлялся страстный интерес Везалия к изучению медицины, к анатомическим исследованиям. В свободное от учения время он у себя дома тщательно препарировал тела животных: мышей, кошек, собак, изучая строение их организма.
Стремясь совершенствовать свои знания в области медицины, особенно анатомии, Везалий в возрасте семнадцати лет направился в университет Монпелье, а в 1533 году впервые появился на медицинском факультете Парижского университета, чтобы слушать лекции прославленного анатома Сильвия. Юный Везалий уже мог критически подойти к методу преподавания анатомии.
В предисловии к трактату «О строении человеческого тела» он писал: «Мои занятия никогда бы не привели к успеху, если бы во время своей медицинской работы в Париже я не приложил к этому делу собственных рук… И сам я, несколько изощрённый собственным опытом, публично провёл самостоятельно треть из вскрытий».
Везалий задаёт на лекциях вопросы, которые свидетельствуют о его сомнениях в правоте учения Галена. Гален — непререкаемый авторитет, его учение следует принимать без всяких оговорок, а Везалий доверяет больше своим глазам, чем трудам Галена.
Учёный справедливо считал анатомию основой медицинских знаний, и целью его жизни стало стремление возродить опыт далёкого прошлого, развить и усовершенствовать метод изучения анатомии человека. Однако церковь, препятствовавшая развитию естественных наук, запрещала вскрытие трупов человека, считая это кощунством. Много трудностей пришлось преодолеть молодому анатому.
Для того чтобы иметь возможность заниматься анатомированием, он использовал любую возможность. Если заводились в кармане деньги, он договаривался с кладбищенским сторожем, и тогда в его руки попадал труп, годный для вскрытия. Если же денег не было, он, прячась от сторожа, вскрывал могилу сам, без его ведома. Что делать, приходилось рисковать!
Везалий так хорошо изучил кости скелета человека и животных, что мог, не глядя на них, на ощупь назвать любую кость.
Три года провёл Везалий в университете, а потом обстоятельства сложились так, что он должен был покинуть Париж и снова отправиться в Лувен.
Там Везалий попал в неприятную историю. Он снял с виселицы труп казнённого преступника и произвёл вскрытие. Лувенское духовенство потребовало строжайшего наказания за такое кощунство. Везалий понял, что споры тут бесполезны, и счёл за благо покинуть Лувен и отправился в Италию.
После получения в 1537 году докторской степени, Везалий стал преподавать анатомию и хирургию в Падуанском университете. Правительство Венецианской республики поощряло развитие науки о природе и стремилось расширить работу учёных в этом университете.
Блестящий талант молодого учёного привлёк внимание. Двадцатидвухлетнего Везалия, уже получившего за свои труды звание доктора медицины, назначили на кафедру хирургии с обязанностью преподавать анатомию.
Он с вдохновением читал лекции, которые всегда привлекали много слушателей, занимался со студентами и, главное, продолжал свои исследования. А чем глубже изучал он внутреннее строение организма, тем больше укреплялся в мысли, что в учении Галена немало весьма значительных ошибок, которых просто не замечали те, кто находился под влиянием галеновского авторитета.
Четыре долгих года работал он над своим трудом. Он изучал, переводил и переиздавал труды учёных-медиков прошлого, своих предшественников-анатомов. И в их трудах он нашёл немало ошибок. «Даже крупнейшие учёные, — писал Везалий, — рабски придерживались чужих оплошностей и какого-то странного стиля в своих непригодных руководствах». Учёный стал доверять самой подлинной книге — книге человеческого тела, в которой нет ошибок. Ночами при свече Везалий анатомировал трупы. Он поставил целью решить великую задачу — правильно описать расположение, формы и функции органов человеческого тела.
Результатом страстного и упорного труда учёного явился знаменитый трактат в семи книгах, появившийся в 1543 году и озаглавленный «О строении человеческого тела». Это был гигантский научный труд, в котором вместо отживших догм излагались новые научные взгляды. Он отразил культурный подъём человечества в эпоху Возрождения.
Книгопечатание быстро развивалось в Венеции и в Базеле, где Везалий печатал свой труд. Его книгу украшают прекрасные рисунки художника Стефана Калькара, ученика Тициана. Характерно, что изображённые на рисунках скелеты стоят в позах, свойственных живым людям, и пейзажи, окружающие некоторые скелеты, говорят более о жизни, нежели о смерти. Весь этот труд Везалия предназначался к пользе живого человека, изучению его организма, чтобы сохранить его здоровье и жизнь. Каждая заглавная буква в трактате украшена рисунком, изображающим детей, изучающих анатомию. Так было в древности: искусство анатомирования преподавалось с детства, знания передавались от отца сыну. Великолепная художественная композиция фронтисписа книги изображает Везалия во время публичной лекции и вскрытия трупа человека.
Труд Везалия взволновал умы учёных. Смелость его научной мысли была настолько необычна, что наряду с оценившими его открытия последователями у него появилось много врагов. Немало горя и разочарования испытал великий учёный, когда его покидали даже ученики. Знаменитый Сильвий, учитель Везалия, назвал Везалия «Везанус», что означает — безумный. Он выступил против него с резким памфлетом, который назвал «Защита против клеветы на анатомические работы Гиппократа и Галена со стороны некоего безумца».
Он не погнушался тем, чтобы обратиться к самому императору с требованием примерно наказать Везалия. «Я умоляю Цезарское Величество, — писал профессор Якоб Сильвий, — чтобы он жестоко побил и вообще обуздал это чудовище невежества, неблагодарности, наглости, пагубнейший образец нечестия, рождённое и воспитанное в его доме, как это чудовище того заслуживает, чтобы своим чумным дыханием оно не отравляло Европу».
Везалий предвидел, как обернутся события после опубликования его трактата «О строении человеческого тела». Ещё раньше он писал: «…мой труд подвергнется нападкам со стороны тех, кто не брался за анатомию столь ревностно, как это имело место в итальянских школах, и кто теперь уже в преклонном возрасте изнывает от зависти к правильным разоблачениям юноши».
Большинство именитых медиков действительно стало на сторону Сильвия. Они присоединились к его требованию обуздать и наказать Везалия, посмевшего подвергнуть критике великого Галена. Такова была сила признанных авторитетов, таковы были устои общественной жизни того времени, когда всякое новшество вызывало насторожённость, всякое смелое выступление, выходившее за рамки установленных канонов, расценивалось как вольнодумство. Это были плоды многовековой идеологической монополии церкви, насаждавшей косность и рутину.
Вскрыв десятки трупов, тщательно изучив скелет человека, Везалий пришёл к убеждению, что мнение, будто у мужчин на одно ребро меньше, чем у женщин, совершенно неверно. Но такое убеждение выходило за рамки медицинской науки. Оно затрагивало церковное вероучение.
Не посчитался Везалий и с другим утверждением церковников. В его времена сохранялась вера в то, что в скелете человека есть косточка, которая не горит в огне, неуничтожима. В ней-то якобы и заложена таинственная сила, с помощью которой человек воскреснет в день страшного суда, чтобы предстать перед господом богом. И хотя косточку эту никто не видел, её описывали в научных трудах, в её существовании не сомневались. Везалий же, описавший строение человеческого тела, прямо заявил, что, исследуя скелет человека, он не обнаружил таинственной косточки.
Везалий отдавал себе отчёт, к каким последствиям могут привести его выступления против Галена. Он понимал, что выступает против сложившегося мнения, задевает интересы церкви. А как поступают с такими дерзкими одиночками, он хорошо знал. Учёный продолжал преподавать в Падуанском университете, но с каждым днём атмосфера вокруг него накалялась всё больше. Ему было горько расставаться с Падуей, с университетом, прерывать свою работу, исследования. Но иного выхода он не видел.
Как раз в это время он получил приглашение испанского императора Карла V занять место придворного лекаря. Двор императора находился в то время в Брюсселе. Карлу служил ещё отец Везалия, и молодой профессор принял предложение императора. Конечно, в Брюсселе у него не будет кафедры, он не сможет заниматься со студентами. Но зато императорский двор послужит для него надёжным укрытием от преследований церкви, оставляя возможность заниматься анатомией. Таким образом, место придворного лекаря, хотя оно было и не по душе Везалию, имело свои преимущества.
И всё-таки трудно было найти более неподходящую должность для Везалия. Он был учёным, исследователем. Теперь же ему надо было усваивать весьма далёкие от науки принципы, умение угождать своим знатным пациентам, улавливать их мысли, участвовать во всех придворных церемониях.
Но и в этих условиях он не прекращал той работы, которой посвятил жизнь. Всё свободное время Везалий отдавал трактату «О строении человеческого тела». Вносил поправки, дополнения, уточнял то, что казалось ему не совсем убедительным. Используя любую возможность, он занимался анатомированием. Но мысль, что он оторван от научных центров, что исследовательская деятельность стала для него побочным делом, угнетала Везалия.
Он мечтал вновь вернуться на научную кафедру. Но реально Везалий даже помышлять не мог о том, чтобы оставить Брюссель и перебраться в иное место, где смог бы заняться работой по душе. Стоило ему оставить императорский двор, как инквизиция вновь проявила бы к нему интерес. Вот почему в самые тоскливые минуты жизни Везалий убеждал себя в том, что надо примириться с обстоятельствами.
Ему удалось вторым изданием выпустить в свет свой трактат «О строении человеческого тела». Это было лишь короткое счастливое мгновение за все эти годы, а потом всё пошло по-прежнему. Потянулись длинной чередой один за другим однообразные дни.
Но вот пришёл конец пребыванию Везалия при императорском дворе. Его покровитель Карл V отрёкся от престола, удалился в монастырь и вскоре умер. На престол вступил Филипп II — желчный и злой человек. Он не любил Везалия и открыто выказал ему свою неприязнь. Этим поспешили воспользоваться многочисленные завистники и недруги придворного лекаря. Отношение нового императора к Везалию ухудшилось ещё более. Везалий чувствовал, что ему надо как можно быстрее уехать из Брюсселя. Он сделал попытку вырваться из-под власти нового императора, обратился с просьбой отпустить его в Италию. Но своенравный Филипп категорически воспротивился этому.
При Филиппе суровые запреты церкви анатомировать трупы вновь коснулись Везалия. Нарушить их значило вступить в открытый конфликт с церковью. Везалий с горечью писал об этом времени: «Я не мог прикоснуться рукой даже к сухому черепу и тем менее возможности я имел производить вскрытия».
Но как ни старался Везалий не давать повода церкви для каких бы то ни было обвинений, это оказалось не в его силах. На Везалия вновь полились потоки клеветы. В довершение всего ему было предъявлено ложное обвинение в том, что он анатомировал живого человека.
Везалий пытался доказать свою невиновность, но всё было тщетно. Он должен был повиноваться. Приговор церкви был категоричен: придворный медик Андрей Везалий должен был во искупление грехов своих отправиться на поклонение в «святые места» к Гробу Господню…
В 1564 году Везалий с женой и дочерью покинул Мадрид. Оставив семью в Брюсселе, он один отправился в далёкий путь. По дороге в Иерусалим учёный остановился в любимой им Венеции, где он провёл лучшие годы своей творческой жизни.
Везалия не оставляла мысль о возвращении к занятиям любимой наукой. Существует предположение, что сенат Венеции предложил ему снова занять кафедру в Падуанском университете. Но мечта учёного вернуться к науке не осуществилась. На обратном пути из Иерусалима при кораблекрушении больной Везалий был выброшен на остров Занте (Греция), где в 1564 году и умер. Нам неизвестно место его погребения, но лучшим памятником учёному, борцу за прогрессивную науку служит его великий труд о строении человеческого тела.
ФРАНСУА ВИЕТ
(1540–1603)
Франсуа Виет — замечательный французский математик, положивший начало алгебре как науке о преобразовании выражений, о решении уравнений в общем виде, создатель буквенного исчисления.
Виет первым стал обозначать буквами не только неизвестные, но и данные величины. Тем самым ему удалось внедрить в науку великую мысль о возможности выполнять алгебраические преобразования над символами, т. е. ввести понятие математической формулы. Этим он внёс решающий вклад в создание буквенной алгебры, чем завершил развитие математики эпохи Возрождения и подготовил почву для появления результатов Ферма, Декарта, Ньютона.
Франсуа Виет родился в 1540 году на юге Франции в небольшом городке Фантене-ле-Конт, что находится в 60 км от Ла-Рошели, бывшей в то время оплотом французских протестантов-гугенотов. Большую часть жизни он прожил рядом с виднейшими руководителями этого движения, хотя сам оставался католиком. По-видимому, религиозные разногласия учёного не волновали.
Отец Виета был прокурором. По традиции, сын выбрал профессию отца и стал юристом, окончив университет в Пуату. В 1560 году двадцатилетний адвокат начал свою карьеру в родном городе, но через три года перешёл на службу в знатную гугенотскую семью де Партене. Он стал секретарём хозяина дома и учителем его дочери двенадцатилетней Екатерины. Именно преподавание пробудило в молодом юристе интерес к математике.
Когда ученица выросла и вышла замуж, Виет не расстался с её семьёй и переехал с нею в Париж, где ему было легче узнать о достижениях ведущих математиков Европы. С некоторыми учёными Виет познакомился лично. Так, он общался с видным профессором Сорбонны Рамусом, с крупнейшим математиком Италии Рафаэлем Бомбелли вёл дружескую переписку.
В 1571 году Виет перешёл на государственную службу, став советником парламента, а затем советником короля Франции Генриха III.
В ночь на 24 августа 1572 года в Париже произошла массовая резня гугенотов католиками, так называемая Варфоломеевская ночь. В ту ночь вместе со многими гугенотами погибли муж Екатерины де Партене и математик Рамус. Во Франции началась гражданская война. Через несколько лет Екатерина де Партене снова вышла замуж. На сей раз её избранником стал один из видных руководителей гугенотов — принц де Роган. По его ходатайству в 1580 году Генрих III назначил Виета на важный государственный пост рекетмейстера, который давал право контролировать от имени короля выполнение распоряжений в стране и приостанавливать приказы крупных феодалов.
Находясь на государственной службе, Виет оставался учёным. Он прославился тем, что сумел расшифровать код перехваченной переписки короля Испании с его представителями в Нидерландах, благодаря чему король Франции был полностью в курсе действий своих противников. Код был сложным, содержал до 600 различных знаков, которые периодически менялись. Испанцы не могли поверить, что его расшифровали, и обвинили французского короля в связях с нечистой силой.
К этому времени относятся свидетельства современников Виета о его огромной трудоспособности. Будучи чем-то увлечён, учёный мог работать по трое суток без сна.
В 1584 году по настоянию Гизов Виета отстранили от должности и выслали из Парижа. Именно на этот период приходится пик его творчества. Обретя неожиданный покой и отдых, учёный поставил своей целью создание всеобъемлющей математики, позволяющей решать любые задачи. У него сложилось убеждение в том, «что должна существовать общая, неизвестная ещё наука, обнимающая и остроумные измышления новейших алгебраистов, и глубокие геометрические изыскания древних».
Виет изложил программу своих исследований и перечислил трактаты, объединённые общим замыслом и написанные на математическом языке новой буквенной алгебры, в изданном в 1591 году знаменитом «Введении в аналитическое искусство». Перечисление шло в том порядке, в каком эти труды должны были издаваться, чтобы составить единое целое — новое направление в науке. К сожалению, единого целого не получилось. Трактаты публиковались в совершенно случайном порядке, и многие увидели свет только после смерти Виета. Один из трактатов вообще не найден. Однако главный замысел учёного замечательно удался: началось преобразование алгебры в мощное математическое исчисление. Само название «алгебра» Виет в своих трудах заменил словами «аналитическое искусство». Он писал в письме к де Партене: «Все математики знали, что под алгеброй и алмукабалой… скрыты несравненные сокровища, но не умели их найти. Задачи, которые они считали наиболее трудными, совершенно легко решаются десятками с помощью нашего искусства…»
Основу своего подхода Виет называл видовой логистикой. Следуя примеру древних, он чётко разграничивал числа, величины и отношения, собрав их в некую систему «видов». В эту систему входили, например, переменные, их корни, квадраты, кубы, квадрато-квадраты и т. д., а также множество скаляров, которым соответствовали реальные размеры — длина, площадь или объём. Для этих видов Виет дал специальную символику, обозначив их прописными буквами латинского алфавита. Для неизвестных величин применялись гласные буквы, для переменных — согласные.
Виет показал, что, оперируя с символами, можно получить результат, который применим к любым соответствующим величинам, т. е. решить задачу в общем виде. Это положило начало коренному перелому в развитии алгебры: стало возможным буквенное исчисление.
Демонстрируя силу своего метода, учёный привёл в своих работах запас формул, которые могли быть использованы для решения конкретных задач. Из знаков действий он использовал «+» и «—», знак радикала и горизонтальную черту для деления. Произведение обозначал словом «in». Виет первым стал применять скобки, которые, правда, у него имели вид не скобок, а черты над многочленом. Но многие знаки, введённые до него, он не использовал. Так, квадрат, куб и т. д. обозначал словами или первыми буквами слов.
Знаменитая теорема, устанавливающая связь коэффициентов многочлена с его корнями, была обнародована в 1591 году. Теперь она носит имя Виета, а сам автор формулировал её так: «Если B+D, умноженное на A, минус A в квадрате равно BD, то A равно B и равно D».
Теорема Виета стала ныне самым знаменитым утверждением школьной алгебры. Теорема Виета достойна восхищения, тем более что её можно обобщить на многочлены любой степени.
Больших успехов достиг учёный и в области геометрии. Применительно к ней он сумел разработать интересные методы. В трактате «Дополнения к геометрии» он стремился создать по примеру древних некую геометрическую алгебру, используя геометрические методы для решения уравнений третьей и четвёртой степеней. Любое уравнение третьей и четвёртой степени, утверждал Виет, можно решить геометрическим методом трисекции угла или построением двух средних пропорциональных.
Математиков в течение столетий интересовал вопрос решения треугольников, так как он диктовался нуждами астрономии, архитектуры, геодезии. У Виета применявшиеся ранее методы решения треугольников приобрели более законченный вид. Так он первым явно сформулировал в словесной форме теорему косинусов, хотя положения, эквивалентные ей, эпизодически применялись с первого века до нашей эры. Известный ранее своей трудностью случай решения треугольника по двум данным сторонам и одному из противолежащих им углов получил у Виста исчерпывающий разбор. Было ясно сказано, что в этом случае решение не всегда возможно. Если же решение есть, то может быть одно или два.
Глубокое знание алгебры давало Виету большие преимущества. Причём интерес его к алгебре первоначально был вызван приложениями к тригонометрии и астрономии. «И тригонометрия, — как замечает Г. Г. Цейтен, — щедро отблагодарила алгебру за оказанную ею помощь». Не только каждое новое применение алгебры давало импульс новым исследованиям по тригонометрии, но и полученные тригонометрические результаты являлись источником важных успехов алгебры. Виету, в частности, принадлежит вывод выражений для синусов (или хорд) и косинусов кратных дуг.
В 1589 году, после убийства Генриха Гиза по приказу короля, Виет возвратился в Париж. Но в том же году Генрих III был убит монахом — приверженцем Гизов. Формально французская корона перешла к Генриху Наваррскому — главе гугенотов. Но лишь после того, как в 1593 году этот правитель принял католичество, в Париже его признали королём Генрихом IV. Так был положен конец кровавой и истребительной религиозной войне, долгое время оказывавшей влияние на жизнь каждого француза, даже вовсе не интересовавшегося ни политикой, ни религией.
Подробности жизни Виета в тот период неизвестны, что само по себе говорит о его желании оставаться в стороне от кровавых дворцовых событий. Известно только, что он перешёл на службу к Генриху IV, находился при дворе, был ответственным правительственным чиновником и пользовался огромным уважением как математик.
По преданию, посол Нидерландов сказал на приёме у короля Франции Генриха IV, что их математик ван Роомен задал математикам мира задачу. Но во Франции, видимо, нет математиков, так как среди тех, кому особо адресовался вызов, нет ни одного француза. Генрих IV ответил, что во Франции есть математик, и пригласил Виета. Знание синусов и косинусов кратных дуг дало возможность Виету решить уравнение 45-й степени, предложенное нидерландским учёным.
В последние годы жизни Виет ушёл с государственной службы, но продолжал интересоваться наукой. Известно, например, что он вступил в полемику по поводу введения нового, григорианского календаря в Европе. И даже хотел создать свой календарь.
В мемуарах некоторых придворных Франции есть указание, что Виет был женат, что у него была дочь, единственная наследница имения, по которому Виет звался сеньор де ла Биготье. В придворных новостях маркиз Летуаль писал: «…14 февраля 1603 г. господин Виет, рекетмейстер, человек большого ума и рассуждения и один из самых учёных математиков века умер… в Париже, имея, по общему мнению, 20 тыс. экю в изголовье. Ему было более шестидесяти лет».
Непосредственно применение трудов Виета очень затруднялось тяжёлым и громоздким изложением. Из-за этого они полностью не изданы до сих пор. Более или менее полное собрание трудов Виета было издано в 1646 году в Лейдене нидерландским математиком ван Скоотеном под названием «Математические сочинения Виета». Г. Г. Цейтен отмечал, что «чтение работ Виета затрудняется несколько изысканной формой, в которой повсюду сквозит его большая эрудиция, и большим количеством изобретённых им и совершенно не привившихся греческих терминов. Потому влияние его, столь значительное по отношению ко всей последующей математике, распространялось сравнительно медленно».
ГАЛИЛЕО ГАЛИЛЕЙ
(1564–1642)
Имя этого человека вызывало одновременно восхищение и ненависть у его современников. Тем не менее он вошёл в историю мировой науки не только как последователь Джордано Бруно, но и как один из крупнейших учёных итальянского Возрождения.
Он родился 15 февраля 1564 года в городе Пизе в знатной, но обедневшей семье. Его отец Винченцо Галилей был талантливым музыкантом и композитором, но искусство не давало средств к существованию, и отец будущего учёного прирабатывал торговлей сукном.
До одиннадцати лет Галилей жил в Пизе и учился в обычной школе, а затем вместе с семьёй переехал во Флоренцию. Здесь он продолжил образование в монастыре бенедиктинцев, где изучал грамматику, арифметику, риторику и другие предметы.
В семнадцать лет Галилей поступил в Пизанский университет и стал готовиться к профессии врача. Одновременно из любознательности он читал труды по математике и механике, в частности, Евклида и Архимеда. Последнего позже Галилей всегда называл своим учителем.
Из-за стеснённого материального положения юноше пришлось бросить Пизанский университет и вернуться во Флоренцию. Дома Галилей самостоятельно занялся углублённым изучением математики и физики, которые его очень заинтересовали. В 1586 году он написал свою первую научную работу «Маленькие гидростатические весы», которая принесла ему некоторую известность и позволила познакомиться с несколькими учёными. По протекции одного из них — автора «Учебника механики» Гвидо Убальдо дель Монте Галилей в 1589 году получил кафедру математики в Пизанском университете. В двадцать пять лет он стал профессором там, где учился, но не завершил своё образование.
Галилей преподавал студентам математику и астрономию, которую излагал, естественно, по Птолемею. Именно к этому времени относятся опыты, которые он ставил, бросая различные тела с наклонной Пизанской башни, чтобы проверить, падают ли они в соответствии с учением Аристотеля — тяжёлые быстрее, чем лёгкие. Ответ получился отрицательный.
В работе «О движении» (1590) Галилей подверг критике аристотелевское учение о падении тел. В ней, между прочим, он писал: «Если разум и опыт в чём-нибудь совпадают, для меня не играет роли то, что это противоречит мнению большинства».
К этому же периоду относится установление Галилеем изохронности малых колебаний маятника — независимости периода его колебаний от амплитуды. К такому выводу он пришёл, наблюдая за качанием люстр в Пизанском соборе и отмечая время по биению пульса на руке… Гвидо дель Монте высоко ценил Галилея как механика и называл его «Архимедом нового времени».
Критика Галилеем физических представлений Аристотеля восстановила против него многочисленных сторонников древнегреческого учёного. Молодому профессору стало очень неуютно в Пизе, и он принял приглашение занять кафедру математики в известном Падуанском университете.
Падуанский период — самый плодотворный и счастливый в жизни Галилея. Здесь он обрёл семью, связав свою судьбу с Мариной Гамба, которая родила ему двух дочерей: Вирджинию (1600) и Ливию (1601); позже родился сын Винченцо (1606).
С 1606 года Галилей занимается астрономией. В марте 1610 года увидел свет его труд под названием «Звёздный вестник». Вряд ли когда-либо в одном произведении сообщалось столько сенсационных астрономических сведений, сделанных к тому же буквально в течение нескольких ночных наблюдений в январе — феврале того же 1610 года.
Узнав об изобретении телескопа и располагая неплохой собственной мастерской, Галилей изготовляет несколько образцов зрительных труб, постоянно улучшая их качество. В результате учёному удалось сделать телескоп с увеличением в 32 раза. В ночь на 7 января 1610 года он направляет телескоп на небо. То, что он увидел там — лунный пейзаж, горные цепи и вершины, бросавшие тени, долины и моря, — уже приводило к мысли о том, что Луна похожа на Землю, — факт, свидетельствовавший не в пользу религиозных догм и учения Аристотеля об особом положении Земли среди небесных тел.
Огромная белая полоса на небе — Млечный Путь — при рассмотрении в зрительную трубу отчётливо разделилась на отдельные звёзды. Возле Юпитера учёный заметил маленькие звёздочки (сначала три, затем ещё одну), которые уже на следующую ночь изменили своё положение относительно планеты. Галилею с его кинематическим восприятием явлений природы не нужно было долго раздумывать — перед ним спутники Юпитера! — ещё один довод против исключительного положения Земли. Галилей открыл существование четырёх спутников Юпитера. Позже Галилей обнаружил феномен Сатурна (хотя и не понял, в чём дело) и открыл фазы Венеры.
Наблюдая, как солнечные пятна перемещаются по солнечной поверхности, он установил, что Солнце тоже вращается вокруг своей оси. На основании наблюдений Галилей сделал вывод, что вращение вокруг оси свойственно всем небесным телам.
Наблюдая звёздное небо, он убедился, что число звёзд гораздо больше, чем можно увидеть простым глазом. Так Галилей подтвердил мысль Джордано Бруно о том, что просторы Вселенной бесконечны и неисчерпаемы. После этого Галилей сделал вывод о том, что гелиоцентрическая система мира, предложенная Коперником, является единственно верной.
Телескопические открытия Галилея были многими встречены с недоверием, даже с враждебностью, но сторонники коперниканского учения, и прежде всего Кеплер, тут же опубликовавший «Разговор со звёздным вестником», отнеслись к ним с восторгом, видя в этом подтверждение правоты своих убеждений.
«Звёздный вестник» принёс учёному европейскую славу. Тосканский герцог Козимо II Медичи предложил Галилею занять должность придворного математика. Она сулила безбедное существование, свободное время для занятий наукой, и учёный принял предложение. Кроме того, это позволяло Галилею вернуться на родину, во Флоренцию.
Теперь, имея могущественного покровителя в лице великого герцога Тосканского, Галилей всё смелее и смелее начинает пропагандировать учение Коперника. Клерикальные круги встревожены. Авторитет Галилея как учёного высок, к его мнению прислушиваются. Значит, решат многие, учение о движении Земли — не просто одна из гипотез устройства мира, которая упрощает астрономические расчёты.
Беспокойство служителей церкви по поводу триумфального распространения учения Коперника хорошо поясняет письмо кардинала Роберто Беллармино одному из своих корреспондентов: «Когда утверждают, что в предположении, будто Земля движется и Солнце стоит неподвижно, все наблюдаемые явления объясняются лучше, чем при… геоцентрической системе Птолемея, то это прекрасно сказано и не заключает в себе никакой опасности; а этого и достаточно для математики; но когда начинают говорить, что Солнце в действительности стоит в центре мира, и что оно только вращается вокруг себя, но не движется с востока на запад, и что Земля находится на третьем небе и с большой скоростью вращается вокруг Солнца, то это вещь очень опасная и не только потому, что она раздражает всех философов и учёных богословов, но и потому, что она вредит св. вере, поскольку из неё вытекает ложность Св. Писания».
В Рим посыпались доносы на Галилея. В 1616 году по просьбе Конгрегации святого индекса (церковного учреждения, ведающего вопросами разрешений и запрещений) одиннадцать видных богословов рассмотрели учение Коперника и пришли к выводу о его ложности. На основе этого заключения гелиоцентрическое учение было объявлено еретическим, а книга Коперника «Об обращении небесных сфер» внесена в индекс запрещённых книг. Одновременно запрещались все книги, поддерживавшие эту теорию, — существовавшие и те, которые будут написаны в будущем.
Галилея вызвали из Флоренции в Рим и в мягкой, но категорической форме потребовали прекратить пропаганду еретических представлений об устройстве мира. Увещевание проводил всё тот же кардинал Беллармино. Галилей был вынужден подчиниться. Он не забыл, чем кончилось для Джордано Бруно упорство в «ереси». Кроме того, как философ он знал, что «ересь» сегодня становится истиной завтра.
В 1623 году под именем Урбана VIII папой становится друг Галилея кардинал Маффео Барберини. Учёный спешит в Рим. Он надеется добиться отмены запрещения «гипотезы» Коперника, но тщетно. Папа объясняет Галилею, что сейчас, когда католический мир раздирается ересью, недопустимо ставить под сомнение истинность святой веры.
Галилей возвращается во Флоренцию и продолжает работать над новой книгой, не теряя надежды когда-нибудь опубликовать свой труд. В 1628 году он ещё раз посещает Рим, чтобы разведать обстановку и выяснить отношение высших иерархов церкви к учению Коперника. В Риме он встречает ту же нетерпимость, но она не останавливает его. Галилей заканчивает книгу и в 1630 году представляет её в Конгрегацию.
Рассмотрение сочинения Галилея в цензуре тянулось два года, затем последовал запрет. Тогда Галилей решил издать свой труд в родной Флоренции. Ему удалось искусно обмануть тамошних цензоров, и в 1632 году книга увидела свет.
Она называлась «Диалог о двух главнейших системах мира — птолемеевой и коперниковой» и была написана как драматическое произведение. По цензурным соображениям Галилей вынужден проявлять осторожность: книга написана в форме диалога между двумя сторонниками Коперника и одним приверженцем Аристотеля и Птолемея, причём каждый из собеседников старается понять точку зрения другого, допустив её справедливость. В предисловии Галилей вынужден заявить, что, поскольку учение Коперника противно святой вере и запрещено, он вовсе не является его сторонником и в книге теория Коперника только обсуждается, а не утверждается. Но ни предисловие, ни форма изложения не могли скрыть истины: догмы аристотелевской физики и птолемеевской астрономии терпят здесь такой очевидный крах, а теория Коперника настолько убедительно торжествует, что вопреки сказанному в предисловии личное отношение Галилея к учению Коперника и его убеждённость в справедливости этого учения не вызывают сомнений.
Правда, из изложения вытекает, что Галилей всё ещё верил в равномерное и круговое движение планет вокруг Солнца, т. е. не сумел оценить и не принял кеплеровых законов движения планет. Он также не согласился с предположениями Кеплера относительно причин возникновения приливов и отливов (притяжение Луны!), развив взамен собственную теорию этого явления, оказавшуюся неверной.
Церковные власти пришли в ярость. Санкции последовали незамедлительно. Продажу «Диалога» запретили, а Галилея вызвали в Рим на суд. Напрасно семидесятилетний старец представил свидетельство трёх врачей о том, что он болен. Из Рима сообщили, что если он не приедет добровольно, то его привезут силой, в кандалах. И престарелый учёный отправился в путь.
«Я прибыл в Рим, — пишет Галилей в одном из писем, — 10 февраля 1633 года и положился на милость инквизиции и святого отца… Сначала меня заперли в замке Троицы на горе, а на следующий день меня посетил комиссар инквизиции и увёз меня в своей карете.
По дороге он задавал мне разные вопросы и выразил пожелание, чтобы я прекратил скандал, вызванный в Италии моим открытием, касающимся движения Земли… На все математические доказательства, которые я мог ему противопоставить, он отвечал мне словами из священного писания: „Земля была и будет неподвижна во веки веков“».
Следствие тянулось с апреля по июнь 1633 года, а 22 июня в той же церкви, почти на том же самом месте, где Джордано Бруно выслушал смертный приговор, Галилей, стоя на коленях, произнёс предложенный ему текст отречения. Под угрозой пыток Галилей, опровергая обвинение в том, что он нарушил запрет о пропаганде учения Коперника, вынужден был признать, что «неосознанно» способствовал подтверждению правоты этого учения, и публично от него отречься. Поступая так, униженный Галилей понимал, что затеянный инквизицией процесс не остановит триумфального шествия нового учения, ему же самому нужны были время и возможность для дальнейшего развития заложенных в «Диалоге» идей, чтобы они стали началом классической системы мира, в которой не осталось бы места церковным догмам. Церкви же этот процесс нанёс непоправимый ущерб.
Галилей не сдался, хотя в последние годы жизни ему пришлось работать в тяжелейших условиях. На своей вилле в Арчетри он находился под домашним арестом (под постоянным надзором инквизиции). Вот что он пишет, например, своему другу в Париж: «В Арчетри я живу под строжайшим запретом не выезжать в город и не принимать ни много друзей одновременно, ни с теми, кого я принимаю, не общаться иначе как крайне сдержанно… И мнится мне, что… теперешняя моя тюрьма заменена будет лишь на ту долгую и тесную, которая всех нас ожидает».
Два года Галилей в заточении пишет «Беседы и математические доказательства…», где, в частности, излагает основы динамики. Когда книга закончена, весь католический мир (Италия, Франция, Германия, Австрия) отказывается её печатать.
В мае 1636 года учёный ведёт переговоры об издании своего труда в Голландии, а затем тайно переправляет туда рукопись. «Беседы» выходят в свет в Лейдене в июле 1638 года, а в Арчетри книга попадает почти через год — в июне 1639 года. К тому времени ослепший Галилей (сказались годы упорной работы, возраст и то, что учёный часто смотрел на Солнце без хороших светофильтров) мог лишь ощупать своё детище руками.