Настройки шрифта

| |

Фон

| | | |

 

Азимов Айзек



Краткая история биологии. От алхимии до генетики







 Глава 1 Древняя биология

У истоков науки



Биология — учение о живых организмах, и, как только человеческий разум развился до такой точки, когда осознал себя как объект, отличающийся от недвижущейся и неощущающей среды, в которой находится, началось формирование биологии. Однако в течение бесчисленных столетий биология не имела той формы, которую мы можем вос­принять как науку. Люди ограничивались попытками лечить себя и других от недугов, ослаблять боль, восстанавливать здоровье и облегчать страдания умирающего. Они дела­ли это в соответствии с магическими или ре­лигиозными ритуалами, пытаясь заставить или задобрить бога или демона, дабы изме­нить ход событий. Но человек не может из­менять, а способен лишь наблюдать живые механизмы животного организма, когда это творение природы разрезано мясником для приготовления пищи или священником для жертвоприношения. И даже попытки детально изучить характеристики органов делались не ради изучения их работы, а с целью оп­ределить, какую информацию можно полу­чить для будущего обсуждения.

Анатомы раннего времени были священно­служителями, которые предсказывали судьбу королей и наций по форме и виду бараньей печени. Несомненно, в течение достаточно длительного времени была собрана полезная информация, даже если учесть подавляющее влияние суеверий. Человек, который бальза­мировал мумии в Древнем Египте, разрабо­тал, располагая знаниями анатомии человека, Кодекс Хамураппи, который был написан в глубине вавилонской истории, приблизитель­но около 1920 г. до н. э., содержит правила ре­гулирования различных медицинских аспек­тов, а значит, и тогда имелись врачи, знания которых, собранные поколениями практичес­ких наблюдений, оказывались полезными и служили во благо человечества. Тем не менее, пока человек верил, что Вселенная находится под абсолютной властью капризных демонов, пока люди чувствовали, что все естественное подчиняется сверхъестественному, прогресс науки шел леденяще медленно. Лучшие умы могут, естественно, посвятить себя не изуче­нию видимого мира, а попыткам через вдохно­вение или откровение достичь понимания не­видимого управляющего нами мира, который находится как бы за кулисами видимого мира. Чтобы достичь уверенности, отдельным лич­ностям пришлось отклонить этот вид познания и сконцентрироваться на изучении мира, кото­рый откроется благодаря разуму. Однако эти люди, погруженные во враждебную культуру, оставили свои имена незаписанными, а помыс­лы неразделенными. Древние греки оказались теми, кто первыми изменили такое положение вещей. Это были беспокойные, любопытные, многоречивые, интеллигентные люди, владею­щие аргументацией и временами непочтитель­ные к богам. Большинство же греков, подоб­но другим народам ранних столетий, жило среди невидимого мира богов и полубогов. Их боги выглядели привлекательнее, чем язычес­кие божества других наций, но не менее дет­скими в своих мотивациях. Болезни у греков • считались, например, следствием стрел Апол­лона, который мог быть подвержен беспри­чинному гневу по самому ничтожному поводу и легко умилостивлен жертвоприношениями и соответствующей лестью. Около 600 г. до н. э. в Ионии на Эгейском побережье (территория современной Турции) ряд философов начали движение за переосмысление мира. Первым из них был Фалес (6409-546 гг. до н. э.). Ионийские философы игнорировали сверхъ­естественное и полагали, что каждое событие имеет причину и частная причина неизбежно приводит к соответствующим последствиям, при этом не создавая опасности изменений по чьей-то капризной воле. Дальнейшее предпо­ложение заключалось в том, что «естествен­ный закон», который управляет Вселенной, есть закон такого рода, что разум человека может охватить его и вывести из начальных принципов или из наблюдений. Эта точка зре­ния возвеличивает значение исследования Вселенной, подразумевая, что человек может понять Вселенную. Если некто может рабо­тать, исходя из знавши о законах, управляю­щих, например, движением Солнца, то этот , человек избавлен от страха, что эти знания внезапно станут бесполезными, когда какой-нибудь Фаэтон решит натянуть вожжи колес­ницы Солнца и повести ее поперек неба про­извольным курсом. Мы мало знаем об этих ранних ионических философах: их труды ут­рачены, но имена пережили века, и централь­ное ядро их учения сохранилось. Кроме того, J философия «рационализма» (верование, что функционирование Вселенной может быть по­нято рассудком скорее, чем «откровением»), открытая ими, не умерла. Она пережила бур­ную юность и погибла вскоре после падения Римской империи, но так и не исчезла.



Иония 



Биология вступила в эру рационализма, когда внутреннюю механику тела животного стали изучать ради самого животного. Первым человеком, анатомировавшим животное про­сто для того, чтобы описать традиционно уви­денное, считается Алкмеон (6 в. до н. э.).

Около 500 г. до н. э. Алкмеон описал не­рвы глаза и изучил структуру цыпленка, растущего внутри яйца. Его можно считать первым студентом анатомии (изучение структуры живого организма) и эмбриологии (изучение организма перед фактическим рождением). Алкмеон также описал узкую трубочку, которая соединяет среднее ухо с глоткой. Эти сведения были упущены из виду последующими поколениями анатомов и переоткрыты позднее только спустя две тысячи лет. Однако наиболее прославленное имя, связанное с истоками биологии, — это Гиппократ (460 — 370 гг. до н. э.). Фактичес­ки ничего не известно о самом этом челове­ке, кроме того, что он родился и жил на ос­трове Кос близ Ионийского побережья. На этом острове был храм Асклепия, греческо­го бога медицины, наиболее близкий эквива­лент сегодняшней медицинской школы; быть допущенным в него и стать священником значило нечто вроде получения современной медицинской степени. Наибольшей заслугой Гиппократа перед биологией было сведение роли Асклепия к чисто почетной позиции. В представлениях Гиппократа не существует бога, покровительствующего медицине. Для Гиппократа здоровое тело — это тело, все органы и системы которого работают хорошо и гармонично, в то время как больное тело — такое, где гармония отсутствует. Задачей врача было внимательно наблюдать за по­рядком, чтобы подметить изъяны в работе организма, а затем предпринять соответству­ющие действия, чтобы эти изъяны скорректировать. Соответствующие действия не сво­дятся к молитвам или жертвоприношениям, изгнанию демонов или умилостивлению бо­гов. Они состоят главным образом в предо­ставлении пациенту возможности отдыхать, надзирая за тем, чтобы он содержался в чи­стоте, дышал свежим воздухом и ел про­стую, здоровую пищу. Любая форма излише­ства была связана с нарушением баланса в работе тела в том или ином отношении, так что требовалась умеренность во всем. Коро­че говоря, задача врача, по воззрениям Гип­пократа, заключалась в том, чтобы дать ес­тественный ход событиям, ибо тело имеет самокорректирующие устройства, которые могут использоваться для любой возможно­сти работать. Приняв в расчет ограничен­ность познаний того времени в области ме­дицины, эту точку зрения можно смело признать великолепной.

Гиппократ основал медицинскую школу, которая пережила столетия после его време­ни. Последователи этой школы помещали его почетное имя на своих трудах, так что сей­час невозможно сказать, какая из книг при­надлежит самому Гиппократу. Например, Клятва Гиппократа, которая до сих пор ци­тируется при медицинских выпускных экза­менах в момент получения медицинской сте­пени, вероятно, написана не им самим, а составлена спустя около шести столетий пос­ле его смерти. При этом самому Гиппократу приписывают одну из старейших работ, посвященную болезни эпилепсии. И это отлич­ный пример проявления рационализма в био­логии. Эпилепсия — это болезнь (пока не изученная всецело), основные проявления которой — расстройство функции мозга, при котором нарушен нормальный контроль моз­га над телом. При ее легких формах больной может неправильно интерпретировать смысл своих впечатлений и поэтому страдать гал­люцинациями. При более осложненной фор­ме мускулы внезапно выходят из-под конт­роля; эпилептик падает на землю и кричит, тело его спазматически двигается, иногда нанося себе жестокий вред. Эпилептические припадки продолжаются не очень долго, но нужно один раз увидеть это ужасное зрели­ще, чтобы понять серьезность заболевания. Случайные зрители, которые не понимают сложности нервной системы, находят легкое объяснение ужасному впечатлению: человек движется не по собственной воле, а потому, что некая сверхъестественная сила захвати­ла контроль над его телом. Эпилептик одер­жим, и болезнь является «святой», потому что в ее течение вовлечены сверхъестествен­ные сущности. В книге «О святой болезни», написанной около 400 г. до н. э., возможно самим Гиппократом, эта точка зрения рез­ко критикуется. Гиппократ утверждает, что бессмысленно в общем случае приписывать болезням божественные причины и нет ра­зумных поводов считать эпилепсию исключе­нием. Эпилепсия, подобно другим болезням, имеет естественные причины и рациональное лечение. Если же причина неизвестна и ле­чение неопределенно, все-таки не следует из­менять принципам. Вся современная наука подтверждает эту точку зрения, и, если не­кто настаивает на том, чтобы отыскать одну дату, одного человека и одну книгу, зна­менующую начало биологии, этот человек может в таком случае указать дату 400 г. до н. э., человека Гиппократа и книгу «О свя­той болезни».



Афины



Греческая биология и, фактически, антич­ная наука в целом достигли своего расцвета в лице Аристотеля (384 — 322 гг. до н. э.). Он был уроженцем Северной Греции и на­ставником Александра Великого. Лучшие дни Аристотеля наступили, однако, в его средние годы, когда он основал знаменитый Лицей в Афинах и преподавал там. Аристо­тель был самым многосторонним и совершен­ным из греческих философов. Он писал почти обо всех предметах, от физики до ли­тературы, от политики до биологии. В по­здние времена стали более прочих известны его труды по физике, имеющие дело главным образом со структурой и функционировани­ем неодушевленной Вселенной; именно они, как показывают события нашего времени, почти полностью неверны. И все-таки именно биология, и в частности изучение морских созданий, была его первой и самой дорогой интеллектуальной любовью. Биологические книги Аристотеля оказались лучшими из всех его научных работ, авторитетны они и в наше время. Аристотель внимательно и аккуратно описывал внешний вид и привыч­ные действия созданий (это было первым этапом естественной истории). В свой труд он включает около пятисот сортов или видов животных и указывает различия между ними. Этот список сам по себе тривиален, но Аристотель пошел дальше. Он признал, что различные животные могут быть сгруппиро­ваны в категории и что эта систематизация не обязательно будет устроена просто и легко. Например, легко разделить наземных жи­вотных на четырехногих творений (зверей), летающих пернатых творений (птиц) и оста­ющихся разнообразных червей («vermin» — от латинского слова «червь»). Морские тво­рения можно разделить огульно по призна­ку «еды». Сделав это, однако, не всегда легко сказать, какой категории может соот­ветствовать отдельное создание. Тщательные наблюдения за дельфином, выполненные Аристотелем, например, совершенно прояс­нили, что, хотя он рыбообразное творение, но если судить по внешнему виду и по пове­дению, то он совершенно нерыбообразное во многих важных отношениях. Дельфин име­ет легкие и дышит воздухом; в отличие от рыбы он может утонуть, если держать его погруженным в воду. Дельфин теплокров­ный, а не холоднокровный, как обыкновен­ная рыба. Более важно, что он рождается, чтобы питаться молоком, а перед рождением питается через плаценту. Во всех этих отно­шениях дельфин подобен волосатым тепло­кровным животным суши — зверям. Эти подобия, как казалось Аристотелю, были су­щественны, чтобы сгруппировать китообраз­ных (китов, дельфинов и морских свиней) скорее вместе со зверями полей, чем с рыба­ми морей. В этом Аристотель был на две тысячи лет впереди ученых своего време­ни, продолжавших в античный период и Средневековье группировать китообразных вместе с рыбами. Аристотель был вполне со­временен и в своем делении чешуйчатых рыб на две группы: рыб с костным скелетом и рыб, подобных акулам, с хрящевым скеле­том. Это тоже соответствовало современной точке зрения. В группировании видов живот­ных и сравнении их с оставшимися во Все­ленной отточенный ум Аристотеля не мог не систематизировать материал в порядке увеличения его сложности. Он видел приро­ду развивающейся постепенными этапами вплоть до человека, который стоит (как это естественно думать для человека) на вер­шине творения. Таким образом, можно раз­делить Вселенную на четыре царства: неодушевленный мир почвы, моря и возду­ха; мир растений над ним; мир животных, находящийся выше, и мир человека на вершине. Неодушевленный мир существует; мир растений не только существует, но и размно­жается; мир животных не только существу­ет и размножается, но движется; и человек не только существует, размножается и дви­жется, он может делать из наблюдений вы­воды. Более того, внутри каждого мира есть дальнейшие подразделения. Растения могут быть разделены на простые и более слож­ные; животные — на тех, которые имеют красную кровь, и тех, которые ее не имеют; животные без красной крови включают в свой состав в порядке возрастающей слож­ности губок, моллюсков, насекомых, рако­образных и осьминогов (по Аристотелю). Животные с красной кровью находятся выше на шкале и включают рыб, рептилий, птиц и зверей. Аристотель знал, что на «ле­стнице жизни» нет резких ступеней, так что невозможно точно сказать, в какую группу может попасть конкретная порода. Поэтому очень простые растения, как кажется, едва ли могут обладать какими-либо атрибутами жизни. Простейшие животные (губки, на­пример) могут быть подобны растениям и так далее. Аристотель нигде не показывает и намеков на предположение, что одна из форм жизни может медленно превратиться в другую; что творение, расположенное выше на лестнице, может подняться с более низко­го места еще выше на ступень. Это концеп­ция, в которой хранится ключ к современной теории эволюции, а Аристотель не был эволюционистом. Однако подготовка «лестницы жизни» неминуемо побуждает к тренировке мышления. Она, в свою очередь, ведет к эво­люционной концепции, а Аристотель был ос­нователем зоологии (изучения животных). Но насколько мы можем предположить, судя но его сохранившимся трудам, он, скорее всего, пренебрегал растениями, однако по­сле смерти Аристотеля руководство его шко­лой перешло к его ученику Теофрасту (372 — 287 гг. до н. э.), который заполнил место, освобожденное его учителем. Теофраст основал ботанику (науку о растениях), и в его трудах тщательно описаны 500 видов растений.

Александрия

После правления Александра Великого и его завоевания Персидской империи греческая культура быстро распространилась вдоль Средиземного моря. Египет подпал под вла­дычество Птолемеев (поднявшиеся потомки одного из генералов Александра), и греки тол­пились во вновь созданной столице — городе Александрии. Птолемеи были первыми, кто основал и поддерживал Музей — ближайший античный эквивалент современных универси­тетов, и александрийские ученые были знаме­ниты своими открытиями в математике, астро­номии, географии и физике. Менее важной в Александрии считалась биология, однако по меньшей мере два имени первого ранга про­звучали здесь. Это были Герофилус и его уче­ник Эрасистрат (расцвет около 250 г. до н. э). В христианские времена они были обвинены публично в рассечении человеческого тела как методе изучения анатомии. Возможно, они этого не делали. Герофилус был первым, кто уделил адекватное внимание мозгу, который рассматривал как пристанище интеллекта (Алкмеон и Гиппократ также верили в это, но Аристотель не верил). Он чувствовал, что мозг не что иное, как орган, сконструирован­ный для того, чтобы охлаждать кровь. Геро­филус был способен делать различие между чувствительными нервами (которые получают ощущения) и моторными нервами (такими, которые вызывают мускульные движения). Он также делал различие между венами и артериями: первые пульсируют, а вторые — нет. Герофилус описал печень и селезенку, сетчатку глаза и первый отдел тонких кишок (которые мы теперь называем «двенадцати­перстной кишкой»). Он также описал яични­ки и простатову железу в мужском организме. Эрасистрат добавил к изучению мозга указа­ние на деление мозга на большой (полушария) и меньший (мозжечок). Он, в частности, отме­тил морщинистую поверхность («извилис­тость») мозга и увидел, что у человека мозг больше, чем у других животных, а исходя из этого, связал извилины с интеллектом. После такого многообещающего начала, к сожале­нию, александрийская школа биологии впала в застой. Фактически вся греческая на­ука начала иссякать после приблизительно 200 г. до н. э. Она начала расцветать в тече­ние четырех столетий, но, ведя последователь­ные войны против своих соотечественников, греки безрассудно растратили свою энергию и состояние. Они попали под македонское, а за­тем под римское владычество. Интересы их ученых все больше и больше поворачивались в сторону риторики, этики, философской мо­рали. Они отворачивались от естественной философии — от рационального изучения природы, которое началось при ионийцах. Биология, в частности, пострадала от этого, ибо рассматривалась как более святая об­ласть, нежели неодушевленная Вселенная, и поэтому являлась менее подходящим объек­том для рационалистического исследования. Рассечение человеческого тела многим каза­лось совершенно неправильным и либо не де­лалось вообще, либо если делалось, то это быстро завершалось, во-первых, под действи­ем общественного мнения, а затем при помощи закона. Во многих случаях запрещения рассечений лежат в области религиозных веро­ваний (у египтян, например), в которых це­лостность физического тела требовалась для соответствующего использования в загроб­ной жизни. У других народов, например евре­ев и позже христиан, рассечение считалось святотатством, потому что человеческое тело было создано по образу Бога и считалось святым.

Рим

Столетия, в течение которых Рим гос­подствовал над средиземноморским миром, представляли собой длительную остановку прогресса биологии. Ученые, казалось, со­гласились сохранять открытия прошлого и популяризировать их перед римской аудито­рией. Авл Корнелий Цельс (расцвет око­ло 30 г. н. э.) собрал греческие знания в курс научных бесед. Подготовленный им курс но медицине пережил его время и был признан европейцами в начале современной эры, став более знаменитым, чем того за­служивал. Расширение физического горизон­та вследствие римских завоеваний сделало для ученых возможным собирать растения и животных из областей, неизвестных ранним грекам. Греческий врач Диоскоридус (рас­цвет в 60 г. н. э.) превзошел Теофраста и описал 600 видов растений, уделяя особое внимание их лекарственным свойствам, по­этому его можно считать основателем фар­макологии (учения о наркотиках и лекар­ствах). Однако даже в естественной истории энциклопедизм брал верх. Римлянин Гай Плиний Секунд (расцвет в 23 — 79 гг. н. э.), более известный как Плиний, написал три­дцатисемитомную энциклопедию, в которой суммировал все, что нашел в области есте­ственной истории среди античных авторов. Практически все это было вторично, взято из книг других, и Плиний даже не отличал правдоподобное от неправдоподобного, так что его материал содержит спорные факты (большей частью из Аристотеля). В нем также содержатся «данные», основанные на суевериях, и байки, взятые неизвестно отку­да. Кроме того, Плиний представляет на­ступление века рационализма. Имея дело с различными видами растений и животных, он всегда очень сильно озабочен функция­ми каждого из них в связи с человеком. В его представлении ничто не существует само по себе, но только как пища для чело­века, или источник для медицины, или опасность, созданная для того, чтобы усили­вать мускулы и укреплять характер челове­ка, или (если все остальное отпадает) как моральный урок. Эта точка зрения пользо­валась большой симпатией среди ранних христиан, потому тома Плиния дожили до современности. Реальным последним биоло­гом античного мира был Гален (130 — 200 гг. н. э.) — греческий врач, родившийся в Малой Азии, который практиковал в Риме. В молодости он был хирургом на арене гла­диаторов, и это, несомненно, дало ему воз­можность наблюдать человеческую анатомию. Однако, хотя в те времена не существовало ничего подлежащего запрещению в жесто­ких и кровавых гладиаторских боях ради извращенного развлечения населения, обще­ство продолжало хмуриться при рассече­ниях мертвого тела ради научных целей. Изучение Галеном анатомии базировалось в основном на рассечениях собак, баранов и других животных. Когда представлялся слу­чай, он анатомировал обезьян, в которых старался разгадать строение человеческого тела. Гален писал плодовито и детально раз­рабатывал теоретические основы функцио­нирования различных органов человеческо­го тела. Тот факт, что он был лишен шансов изучать человеческое тело само по себе и что ему не хватало современных инструмен­тов, стал причиной неправдоподобия его теорий с точки зрения современной науки. Он не был христианином, но строго верил в существование единого Бога. Также, по­добно Плинию, он верил, что все делается с высшей целью, так что находил знаки Бо­жественного промысла везде. Это соответ­ствовало точке зрения ранних христиан и помогло росту популярности Галена в по­следующие столетия.







Глава 2 Средневековая биология

Темные века

В последние дни Римской империи хрис­тианство выросло до положения господству­ющей религии. Когда империя (или ее запад­ные области) была похоронена под натиском германских племен, племена были обращены в христианство. Христианство не убило гре­ческую науку, лишь довело ее до состояния, близкого к угасанию. И все же господство христианства работало против возрождения науки в течение многих столетий. Точка зре­ния христиан была противоположна точке зрения ионических философов. По мнению христиан, мир не был миром разума, но «го­родом Бога», который, может быть, постигнут только откровением, для которого Библия, писания отцов церкви и вдохновение самой церкви единственно верные источники. Вера в существование естественного закона, кото­рый был бы неизменяемым и неизменяющим­ся, дает путь к вере в некоего мирового субъекта, служащего посредником Бога.

Фактически, даже восприятие кем-либо свет­ских вещей было «дьявольским», не относя­щимся к сфере духа. Наука с этой точки зрения становится вещью, сопряженной с гневом Божьим. Естественно, это не было универсальной точкой зрения, и свет науки поддерживал слабое пламя среди мрака так называемых темных веков. Случайный уче­ный боролся, чтобы удержать мировые зна­ния в живых. Например, англичанин Беде (673 — 735 гг. н. э.) сохранил все, что смог, из античных авторов. Однако в связи с тем, что сохраненное состояло главным образом из подчисток Плиния, избранное им было не особенно передовым. Возможно, наука так и погибла бы вовсе, если бы не арабы. Арабы приняли ислам — религию более молодую, чем христианство, и, причитая молитвами Мохаммеда, вступили в седьмое столетие. Они возникли сразу, подобно взрыву, на своем сухом полуострове и заполнили всю юго-западную Азию и северную Африку. В 730 г., спустя столетие после Мохаммеда, люди ислама (мусульмане) осаждали Кон­стантинополь на востоке и Францию на за­паде. В военном и культурном отношении они казались ужасом и опасностью для хри­стианской Европы, но интеллектуально, как °ни доказали, стали благом. Подобно римля­нам, арабы не были великими научными пер­вооткрывателями. Но, как бы то ни было, они открыли работы таких ученых, как Ари­стотель и Гален, перевели их на арабский; сохранили их, изучали и писали коммента­рии к ним. Наиболее важным из мусульман­ских биологов был персидский врач Ибн Сина, который обычно именовался по лати­низированной версии его имени Авиценна. Авиценна писал многочисленные книги, ба­зирующиеся на медицинских теориях Гип­пократа и материалах из книги Цельса. При­мерно в тот период, по крайней мере в Западной Европе, наступил перелом в про­тивостоянии арабам. Христианские армии от­воевали Сицилию, которую уже несколько столетий контролировали мусульмане, а за­тем — Испанию. К концу XI в, западноев­ропейские армии начали проникать на Ближ­ний Восток, где их называли крестоносцами. Контакты с мусульманами помогли европей­цам узнать, что враждебная культура — не просто порождение дьявола, но в некоторых отношениях более продвинута и обогащена опытом, чем их собственная. Европейские ученые стали осваивать мусульманские уче­ния; расцветали проекты перевода арабских научных книг. Работая во вновь отвоеванной Испании, в которой трудились и мусульман­ские ученые, итальянец Жерар де Кремона (1114 — 1187) перевел труды Гиппократа, так же как труды Аристотеля и Галена, на ла­тынь. Немецкий ученый Альбертус Магнус (1206— 1280) был одним из новых поклонни­ков вновь открытого Аристотеля. Его учения и писания были всецело аристотелевскими, Магнус помог заложить фундамент греческой науки, в которой он мог бы, по крайней мере, сделать больше. Одним из учеников Магну­са был итальянский ученый Томас Аквинус (1225 — 1274). Он работал над гармонизаци­ей философии Аристотеля и христианской веры, в чем преуспел. Аквинус был рациона­листом: он чувствовал, что разум создан Богом, так как является составляющей Все­ленной, и что правильно рассуждающий человек не может прийти к заключению, чуждому христианскому учению. Результат рассуждения никогда не будет зловещим или вредным. Эта стадия развития науки стала началом возобновления рационализма.

Возрождение

В Италии практика анатомирования была возобновлена в позднее Средневековье. Эта практика пользовалась дурной славой, но су­ществовала важная законодательная школа в Болонье, и часто случалось, что законные во­просы, обсуждающие причины смерти, могли быть лучше всего решены при помощи посмер­тного вскрытия.

Школы в Болонье и Салерно главенство­вали в медицинском направлении именно в это время. Возрождение анатомирования не заложило сразу новых основ биологии. Сна­чала первичной целью была иллюстрация трудов Галена и Авиценны. Ученый, овла­девший основами наук по книгам, считал анатомирование слишком унизительной ра­ботой, которая предоставлялась «мастеро­вым». Ученик слушал лекции, но не прове­рял, согласуются ли знания, которые он получает, с фактами, в то время как «мас­теровой», занятый анатомированием, был обязан не противоречить преподавателям. Поэтому из раза в раз повторялись грубей­шие ошибки; они же увековечивались. Ут­верждалось, что признаки и сочленения, которые Гален находил у животных и пред­полагал существующими у человека, об­наруживались у человека снова и снова, хотя фактически они не существуют. Ис­ключением из этой печальной ситуации был итальянский анатом Мондино де Луцци (1275—1326). В медицинской школе в Болонье он делал собственные работы по ана­томированию и в 1316 г. написал первую книгу, всецело посвященную анатомии. По­этому он известен как продолжатель истин­ной анатомии. Но это было давно, и к тому же Мондино не набрался смелости, чтобы порвать с ошибками прошлого, и некото­рые из его описаний базируются скорее на свидетельствах старых книг, чем на его собственных наблюдениях. Более того, практика анатомирования при помощи под­чиненных после его ухода была восстанов­лена. Однако новая мотивация к изучению биологии уже поднималась в Италии. Пери­од возрождения обучения на практике (час­тично из-за переоткрытия античных трудов, а частично из-за подъема самой европейской культуры) называется Ренессансом, или Возрождением. В период Ренессанса быстро растет новый натурализм в искусстве. Ху­дожников обучали законам перспективы, чтобы создавать произведения, изображаю­щие трехмерную поверхность. Как только это было сделано один раз, каждое последу­ющее усилие совершенствовало подражание искусства природе. Чтобы сделать челове­ческое тело зрительно реалистичным, ху­дожник должен изучать (если он работает на совесть) не только контуры кожи, но и контуры мускулов, сухожилия и мышцы, и даже устройство костей. Возможно, наибо­лее знаменитым художником-анатомом был итальянец Леонардо да Винчи (1452 — 1519), который делал рассечения как животных, так и человека. Он имел преимущество пе­ред обыкновенными анатомами, поскольку был в состоянии сам иллюстрировать соб­ственные открытия великолепными рисунка­ми. Он изучал и изображал, как устроены кости и суставы. Он был первым, кто изоб­разил принципиальное сходство костей ко­нечности человека и лошади, несмотря на поверхностные различия. Так появилась го­мология, которая объединила в связанные группы многих животных внешне различно­го облика и помогла заложить основы тео­рии эволюции. Леонардо изучал и иллюст­рировал способ действия глаза и сердца, а вдобавок зарисовал растения. Поскольку он пытался изобрести машину, которая сможет сделать возможным полет человека, с боль­шим вниманием изучал птиц, зарисовывая их в полете. Все это он, однако, держал в закодированном блокноте. Его современни­ки не знали о его работе, которая стала из­вестна только в новейшие времена. И все-таки да Винчи не оказал влияния на прогресс науки из-за противостояния церк­ви. Пока анатомия медленно приходила в себя, такой же процесс происходил с есте­ственной историей.

XV век выглядел как век расцвета Евро­пы. Европейские суда бороздили побережья Африки, достигали Индии и островов, рас­положенных за нею, открывали Америку. Как никогда прежде, после завоеваний Рима и Македонии, новые и неслыханные виды растений и животных возбуждали интерес ученых. Итальянский ботаник Просперо Альпини (1553 — 1617) служил врачом у ве­нецианского консула в Каире, в Египте. Имея возможность изучать финиковые паль­мы, он понял, что они бывают мужские и женские. Теофраст заметил это почти две тысячи лет тому назад, но факт был забыт, и за основу принята бесполость растений. Альпини был первым европейцем, описав­шим кофейные растения. Естественная исто­рия Ренессанса получила наиболее многопла­новое развитие при шведском натуралисте Конраде фон Геснере. Он был подобен Пли­нию по разносторонности интересов, универсальному любопытству, а также легковерию и убежденности, что простая аккумуляция выдержек из старых книг есть путь к уни­версальным знаниям. Его иногда называли германским Плинием.

Переходный период

В ранние декады 1500-х годов Европа воз­вращалась из темноты и постепенно достигла уровня греческой биологии (и фактически — греческой науки в целом). Прогресс не мог двигаться дальше, пока ученые Европы не ос­воили то, что было в греческих книгах. Рабо­ты Мондино проиллюстрировали, как трудно порвать с античностью. Потребовался полусу­масшедший хвастун, чтобы сделать паузу, а затем совершить прорыв к новым временам. Сделал это швейцарский врач по имени Тео­фраст Бомбаст фон Гогенгейм (1493—1541). Его отец обучил сына, который обладал вос­приимчивым умом, медицине. Во время своих путешествий Гогенгейм собрал большое коли­чество лекарств, которые не были известны его современникам, оставшимся сидеть дома, и таким образом стал авторитетнейшим вра­чом. Он интересовался алхимией, которую европейцы переняли у арабов, в свою очередь воспринявших ее от александрийских греков. Обычный алхимик (если он не отъявленный обманщик) был кем-то вроде современного химика, но две наиболее пугающие цели алхимии никогда не были достигнуты алхимичес­кими методами. Алхимики ^пытались, во-пер­вых, найти метод превращения основных ме­таллов, таких как свинец, в золото. Во-вторых, они искали, что может быть общего у того, что известно как «философский камень», — су­хой материал, который использовался при превращении металлов в золото, — с «эликси­рами жизни», считавшимися ключом к бес­смертию. Гогенгейм не видел точки зрения, которой можно было бы придерживаться, что­бы получить золото. Он верил, что истинная функция алхимии заключается в том, чтобы помогать врачам в лечении болезней. Из этих соображений он сконцентрировался на фило­софском камне, который, как он заявлял, от­крыл. Он стал утверждать не колеблясь, что будет жить вечно, но умер, не дожив до пяти­десяти, из-за случайного падения. Алхимичес­кое учение Гогенгейма подтолкнуло его к изу­чению минеральных источников для лекарств и заставило отвергнуть ботаническую медици­ну, бывшую в почете у античных ученых. Он поносил античных врачей. Труды Цельса уже были переведены и стали библией евро­пейских врачей. Но Гогенгейм называл себя Парацельсом («лучший, чем Целы»), и под этим тщеславным именем стал известен потом­кам. Парацельс был городским врачом в Базе­ле. В 1527 г., чтобы продемонстрировать пуб­лике свое мнение настолько, насколько это возможно, он сжег копии книг Галена и Ави­ценны в городском сквере. В результате консервативные враги из медицинской среды выпроводили Парацельса из Базеля, но не из­менили его мнения. Парацельс не разрушил греческую науку или даже греческую биоло­гию, но его атаки привлекли внимание уче­ных. Его собственные теории были немногим лучше греческих теорий, против которых он выступал с таким бешенством, но это было время, когда иконоборчество оказалось полез­но само по себе. Его громкая непочтитель­ность по отношению к античности не поддер­живала, а сотрясала столпы ортодоксального мышления, и, хотя греческая наука еще неко­торое время держала мертвой хваткой евро­пейский разум, ее власть ощутимо слабела.

Глава 3

Рождение современной биологии

Новая анатомия



Знаменующим началом научной револю­ции принято считать 1543 г. В этом году польский астроном Николай Коперник опуб­ликовал книгу, где была изложена новая точка зрения на Солнечную систему, цент­ром которой было Солнце, а Земля — пла­нетой, движущейся по орбите подобно любой другой. Это открытие ознаменовало пораже­ние старой греческой точки зрения на Все­ленную, в центре которой была Земля, хотя жесткая борьба в течение столетия, оставше­гося до победы новой точки зрения, была очевидной. В том же самом году была опуб­ликована вторая книга, столь же революци­онная в области биологических наук, как и книга Коперника в области наук физичес­ких. Эта вторая книга была «О структуре че­ловеческого тела» бельгийского анатома по имени Андреас Везалий. Везалий получил образование в Нидерландах в строгих традициях Галена, к которому питал глубочайшее уважение. Однако он путешествовал по Ита­лии, пока не закончил образования, и тут вступил в более либеральную интеллектуаль­ную атмосферу. Он снова ввел практику Мондино де Луцци делать свои собственные анатомические вскрытия и не разрешал себе поддаваться влиянию старой греческой точ­ки зрения, когда его глаза не соглашались с этой точкой зрения. Книга, которую он опуб­ликовал в результате наблюдений, была пер­вым корректным трудом по человеческой анатомии в ряду уже существующих. Она имела большие преимущества перед ранними книгами. Во-первых, вышла, когда уже было открыто книгопечатание, так что тысячи ко­пий могли быть размножены по всей Евро­пе. Во-вторых, имела иллюстрации, причем исключительно хорошего качества; многие были сделаны Яном Стивенсоном Ванкалкаром, учеником Тициана. Человеческое тело было показано в естественных положениях, а иллюстрации мускулов оказались особенно хороши. Жизнь Везалия после появления его книги была несчастливой. Его точка зре­ния казалась еретической в отношении неко­торых авторитетов, и, что особенно важно, определенные рассечения, рекомендованные в его книге, были незаконными. Он был вы­нужден предпринять путешествие в Святую землю и на обратном пути погиб в корабле­крушении. Революция Везалия в биологии была, однако, более эффективна, чем революция Коперника в астрономии. То, что кни­га Везалия поддерживала, не было чем-то таким же неправдоподобным, как огромная Земля, движущаяся вокруг Солнца. Скорее в этой книге представлены форма и устрой­ство ^органов, которые (со ссылками на авторитет античных греков) каждый мо­жет увидеть, если побеспокоится взглянуть. Греческая анатомия устарела, тогда как итальянская анатомия расцвела. Габриэлло Фаллопио, или Габриэль Фаллопиус, один из учеников Безалия, изучал трубы, ведущие от яичников к матке. Они до настоящего времени называются фаллопиевыми труба­ми. Другой итальянский анатом, Бартоломео Еустафио, или Еустафиоус (1500 — 1574), был оппонентом Везалия и сторонником Га-лена, но он также изучал человеческое тело и описывал то, что видел. Он вновь открыл трубы Алкмеона, ведущие от уха к горлу, и теперь они известны как евстафиевы трубы. Освеженный взгляд на анатомию распрост­ранился и на другие ветви биологии. Вера Гиппократа в легкую руку врача в последу­ющие столетия открыла дорогу к действи­тельно жестоким лекарствам. Фактически методы были такими грубыми, что хирургия в ранние современные времена была предос­тавлена не врачам, а парикмахерам, которые режут мясо так же, как волосы. Возможно, потому, что хирурги-парикмахеры были сла­бы в теории, они переходили к решительным мерам: огнестрельные раны дезинфицировали кипящим маслом, а кровотечение останав­ливали прижиганием раскаленным железом. Французский хирург Амбруаз Паре (1517 — 1590) помог изменить это положение вещей. Он начал жизнь подмастерьем парикмахера, присоединился к армии хирургов-парикмахе­ров и ввел испугавшие всех преобразования. Он использовал благородные мази комнат­ной температуры для лечения огнестрельных ран и останавливал кровотечение, зашивая артерии, за что его иногда называют отцом современной хирургии. Паре также изобрел хитроумные искусственные конечности, улуч­шил акушерские методы и написал француз­ские резюме к работам Везалия, так что другие хирурги-парикмахеры, не обученные латыни, могли собрать определенные факты, относящиеся к строению человеческого тела, прежде чем лечить кашель наугад. И еще за­долго до того, как анатомы стали практико­вать и начали делать собственные вскрытия, врачи уже делали хирургические операции.



Циркуляция крови

Скорее, чем тонкости вопроса внешнего вида и устройства частей тела, которые явля­ются предметом анатомии, предметом физио­логии стало нормальное функционирование этих частей. Греки достигли малого прогресса в физиологии, и большинство их заключений было неверно. В частности, они ошибались в отношении функционирования сердца. Серд­це, очевидно, насос: оно качает кровь. Но от­куда берется кровь и куда она уходит? Ранние греческие врачи ошибались, рассуждая, что вены — единственные кровеносные сосуды. В трупах артерии обычно пусты, и греки по­лагали, что артерии есть сосуды для передачи воздуха (слово «артерия» значит на греческом «воздуховод»). Герофил, однако, показал, что как артерии, так и вены проводят кровь. Обе сети кровеносных сосудов соединены сер­дцем, и естественно было предположить, что соответствующие вещества могут растворять­ся, если будут найдены какие-то связи между венами и артериями в окончаниях, уходящих от сердца. Но более тщательное исследование показало, что как вены, так и артерии развет­вляются на все более и более тонкие сосуды, которые, в конечном счете, станут такими, что теряются из виду. Между ними не было най­дено никакой связи. Гален предположил, что кровь движется от одной сети сосудов к дру­гой, проходя от правой стороны к левой. Для того чтобы допустить прохождение крови че­рез сердце, он предположил, что здесь долж­ны быть крохотные отверстия в толстой мяси­стой перегородке, которая разделяет сердце на правую и левую части. Этих отверстий никто никогда не наблюдал, но через семнадцать столетий после Галена врачи и анатомы пред­положили, что они существуют. Итальянские анатомы новой эры стали подозревать, что это, возможно, не так, не набравшись отваги выйти на открытое отрицание. Например, Джероламо Фабриций (1533—1619) открыл, что большие вены имеют клапаны. Он описал их и показал, как они работают. Они устрое­ны так, что кровь может течь через них по направлению к сердцу без проблем, но не спо­собна пройти назад от сердца без того, чтобы быть пойманной в ловушку клапаном. Таким образом, кровь может двигаться только в од­ном направлении — к сердцу. Это, однако, противоречило замечанию Галена о движении назад. Фабриций дерзнул пойти лишь на­столько далеко, чтобы допустить, что клапаны задерживают (скорее, чем останавливают) обратный ток крови. Но у Фабриция был сту­дент, англичанин по имени Уильям Гарвей, за­численный при строгом подборе кадров. Воз­вратившись в Англию, он изучил сердце и заметил, как заметили многие анатомы до него, что в нем есть клапаны одностороннего движения. Кровь может поступать в сердце из вен, но клапаны препятствуют ее обратному Движению. Кровь может покидать сердце че­рез артерии, но не может возвращаться из-за того, что имеется другая сеть клапанов одно­стороннего движения. Когда Гарвей перевязы­вал артерии, сторона, направленная к сердцу, выпячивалась от переполнения кровью. Когда же он перевязывал вену, выпячивалась сторо­на, направленная от сердца. Все сходилось на том, что кровоток не ослабевает и движется в одном направлении. Кровь попадает из вен в сердце, а из сердца — в артерии. Она никогда не возвращается. Гарвей рассчитал, что в течение трех часов сердце прогоняет через организм количество крови, равное троекрат­ной массе человеческого тела. Кажется немыс­лимым, что кровь может быть сформирована и вытолкнута назад в таком темпе, поэтому кровь из артерий должна быть возвращена в вены где-нибудь вне сердца, через соедини­тельные сосуды, слишком тонкие, чтобы их увидеть (такие невидимые сосуды были не больше, чем невидимые поры Галена в сердеч­ной мышце). Предположив существование та­ких сосудов, было легко увидеть, что сердце перекачивает одну и ту же кровь, но многу раз: вены — сердце — артерии — вены — серд­це — артерии... Следовательно, нет ничего неожиданного в том, что насос может в тече­ние часа три раза перекачать через себя массу тела человека. В 1628 г. Гарвей опубликовал это заключение и свидетельства, доказываю­щие его, в маленькой книге, всего из 72 стра­ниц. Она была напечатана в Голландии под названием «О движениях сердца и крови» и полна типографских ошибок. Несмотря на не­приглядный размер и невзрачный вид, эта книга была революционной; она полностью удовлетворяла требованиям времени. Это были годы, когда итальянский ученый Гали-лео Галилей (1564 — 1642) популяризировал экспериментальный метод в науке и, делая это, комплексно разбил Аристотелеву систему физики. Работа Гарвея представляла первое большое приложение новой экспериментальной системы к биологии. Его он разрушил Га­ленову систему физиологии и основал совре­менную физиологию (Гарвеево вычисление количества крови, перекачиваемой сердцем, представляет собой первое важное приложе­ние математики к биологии). Врачи старой школы всячески поносили Гарвея, но ничего не могли поделать против фактов. Со време­нем, когда Гарвей состарился, факт циркуля­ции крови был принят биологами Европы, хотя соединительные сосуды между артерия­ми и венами и остались неоткрытыми. Европа, таким образом, определенно и окончательно выступила за пределы греческой биологии. Новая теория Гарвея открыла сражение меж­ду двумя противоположными точками зрения, начала битву, которая заполнила историю со­временной биологии, и победа в ней полнос­тью не предрешена до сих пор. В соответствии с прежней точкой зрения на жизнь одушевлен­ные предметы рассматривались, по существу, отдельно от неодушевленных, так что человек не мог ожидать, что изучит природу неоду­шевленных объектов. Кратко можно сказать, что существует точка зрения, в соответствии с которой имеется две отдельные сети законов: одна — для одушевленных и одна — для не­одушевленных предметов. Это точка зрения виталистов. Но может существовать точка зрения, в соответствии с которой имеется высоко­специализированная, но не фундаментальная Разница между менее запутанной, более орга­низованной системой неодушевленной Вселенной. При достаточном времени и усилиях изу­чение неодушевленной Вселенной может обес­печить достаточно знаний, чтобы привести к пониманию живого организма, который сам невероятно сложная машина. Это точка зре­ния «механистов». Открытие Гарвея было, ра­зумеется, прорывом в пользу точки зрения ме­ханистов. Сердце могло рассматриваться как насос, а движение жидкости осуществлялось как движение неодушевленной жидкости. Если предположение верно, то где это движе­ние может остановиться? Не может ли остаток живого организма быть просто сетью сложных и переплетенных механических систем? Наи­более важный философ века француз Рене Декарт (1596—1650) был привлечен мнением о теле как о механическом устройстве. Каса­тельно человека, по крайней мере, такая точ­ка зрения была опасно направлена против принятых верований, и Декарт позаботился о том, чтобы уточнить: человек — машина не в отношении разума и души, но только в от­ношении физической структуры, подобной животной. В отношении разума и души он ос­тавался виталистом. Декарт сделал предполо­жение, что взаимодействие между телом и ра­зумом-душой осуществляется через маленький обрывок ткани, дополняющий мозг, — шиш­ковидную железу. Он был соблазнен верова­нием, будто чувствует только человек, облада­ющий шишковидной железой. Вскоре было доказано, что дело обстоит не так. Действительно, у некоторых примитивных рептилий шишковидная железа развита намного лучше, чем у человека. Теории Декарта, хотя, воз­можно, и неправильны в деталях, все же были очень влиятельны, и отсутствовали физиоло­ги, которые пытались разбить механистичес­кую точку зрения на маленькие разработан­ные детали. Поэтому итальянский физиолог Джованни Альфонсо Борелли (1608—1679) в книге, появившейся после его смерти, рас­сматривает мускульное действие из комбина­ции мускулов и костей как систему рычагов. Это доказало свою пользу, и закон рычага вы­полняется для рычагов, сделанных из кости и мускулов. Борелли старался применять по­добные механические принципы для других органов, таких, как легкие и желудок, но здесь успех ему изменил.

Начало биохимии

Естественно, человеческое тело можно рассматривать как машину, без необходимо­сти представлять ее себе как систему рыча­гов и приспособлений. Имеются методы ре­шения таких задач при чисто физическом ^единении компонентов. Например, хими­ческое взаимодействие. Дыра может быть пробита в куске металла при помощи молотка и гвоздя, но ее также можно проделать при помощи кислоты. Первые химические эксперименты на живых организмах провел фламандский алхимик Ян Батист ван Хельмонт (1577 — 1644). Ван Хельмонт выращи­вал деревья во взвешенном количестве по­чвы и показал, что на протяжении пяти лет, в течение которых он добавлял только воду, дерево приобрело 74 килограмма веса, в то время как почва потеряла только 60 грам­мов. Из этого он сделал вывод, что дерево не производит свою субстанцию из почвы (что правильно), а производит эту субстан­цию из воды (что неправильно, по крайней мере, отчасти). Ван Хельмонт не принял в расчет воздух и при этом, по иронии судьбы, был первым, кто начал изучать газооб­разные субстанции. Он изобрел слово «газ» j и открыл газ, который назвал «дух дерева» и который, как выяснилось позже, был ди­оксидом углерода. Именно этот газ, как те­перь известно, и есть главный источник суб­станции в растениях. Ван Хельмонт первым начал изучать химию живых организмов (биохимию, как мы сейчас ее называем). Первым энтузиастом был Франц де ла Бое (1614 — 1672), известный под латинизиро­ванным именем Францискус Сильвиус. Он выносил концепцию тела как химического устройства. Он чувствовал, что пищеваре­ние — химический процесс и подобно процес­сам ферментации. В этом, как выяснилось, он был прав. Ученый предположил, что здо­ровье тела, зависит от соответствующего ба­ланса между его химическими компонентами. В этом также были, элементы правды, хотя состояние знаний во времена Сильвиуса было слишком примитивным, чтобы позволить что-либо большее, чем начало прогресса в этом направлении. Сильвиус только и смог предположить, что болезнь отражает избы­ток или недостаток кислоты в организме.

Микроскоп

Слабость теории Гарвея о циркуляции заключалась в том, что он не был уверен, встречаются ли артерии и вены, а сумел только предположить, что соединения суще­ствуют, но слишком малы, чтобы быть ви­димыми. Ко времени его смерти вопрос был по-прежнему не решен и мог остаться тако­вым навсегда, если бы человечество не пре­кратило пользоваться невооруженным гла­зом. К счастью, этого не произошло. Уже древние знали, что искривленные зеркала и пустотелые стеклянные сферы, заполненные водой, обладают усиливающим эффектом. В начале XVII в. люди начали эксперимен­тировать с линзами, чтобы усилить увели­чение насколько возможно. В этом они вдохновлялись большими успехами других линзовых инструментов, в частности теле­скопа, который использовал в астрономи­ческих целях Галилео в 1609 г. Постепенно Увеличивающие инструменты — микроско­пы (от греческих слов «видеть малое») получили широкое применение. В первый раз наука биология была расширена при помощи прибора, дающего человеческому разуму возможность постигать явления, лежащие за пределами человеческого зрения.

Микроскоп позволил натуралистам опи­сывать маленькие создания в деталях, недо­ступных без него, а анатомам — обнаружить структуры, которые невозможно увидеть другим способом. Датский натуралист Ян Сваммердам (1637 — 1680) провел много вре­мени, наблюдая насекомых под микроскопом и делая прекрасные рисунки крохотных де­талей их анатомии. Он также открыл, что кровь не представляет собой однородной красной жидкости, но содержит множество крохотных частиц, которые и придают ей ее цвет. (Мы теперь называем эти частицы красными кровяными тельцами.) Англий­ский ботаник Неемия Грю (1641-1712) изу­чал под микроскопом растения и, в особен­ности, органы воспроизводства растений. Он описал индивидуальные крупинки пыльцы, которые эти растения производят. Датский анатом Ренье де Грааф (1641 — 1673) выпол­нил аналогичную работу, но предметом его исследований стали животные. Он изучил тонкую структуру семенников и яичников. Особое внимание он уделял определенным малым, но важным структурам, которые те­перь называются фолликулами Граафа. Бо­лее интересным, чем любое из этих откры­тий, было открытие итальянского физиолога Марчелло Мальпиги (1628-1694). Он так­же изучал растения и насекомых, но среди ранних его работ было изучение легких ля­гушки. В них он обнаружил комплексную сеть кровеносных сосудов, слишком малых, чтобы быть видимыми невооруженным гла­зом, которые где-то соединялись. Когда он проследил эти маленькие сосуды до места их соединения в сосуды большие, оказалось, что в одном направлении они являются ве­нами, а в другом — артериями. Артерии и вены, следовательно, действительно соединя­ются в сосуды, слишком малые для того, чтобы быть видимыми человеческим глазом, как предположил Гарвей. Эти микроскопи­ческие сосуды были названы «капиллярами» (от латинского «волосоподобный», хотя фак­тически они много тоньше волоса). Это от­крытие, впервые сделанное в 1660 г., три года спустя после смерти Гарвея, завершило теорию циркуляции крови.

Человеком, реально практиковавшим микро­скопические исследования, был не Мальпиги, который ввел микроскоп в практику, а голланд­ский торговец Антони ван Левенгук (1632 — 1723), для которого микроскопия была просто хобби, но хобби, поглощавшее все его время. Ранние микроскописты, включая Мальпиги, использовали системы линз, которые давали большее увеличение, чем одинарные линзы. Однако линзы, которые они использовали, были несовершенными, обладающими поверх­ностными дефектами и внутренними изъяна­ми- При попытке добиться слишком большого Увеличения детали росли, делаясь нечеткими. Но ван Левенгук использовал одинарные лин­зы, построенные из маленьких кусочков стек­ла, не имеющего изъянов. Линзы в некоторых случаях были не больше булавочной головки, но они, верно, служили научным целям Левенгука. Он смотрел на все через свои линзы и был способен описать корпускулы и капилляры более детально, чем первоначальные исследо­ватели. Ван Левенгук видел кровь, движущу­юся через капилляры в теле головастика, что фактически подтверждает теорию Гарвея в действии. Один из его ассистентов впервые увидел сперматозоиды, крохотные головастикоподобные тельца, в мужском семени.

Самым пугающим из всех прочих было его открытие в застойной воде из канавы, на ко­торую он глядел через свои линзы, крохотных созданий, невидимых невооруженным гла­зом, имеющих все атрибуты жизни. Эти суще­ства подобны животным (теперь они известны как protozoa, или простейшие — от греческо­го слова, означающего «первые животные»). Таким образом, начинает казаться, что не только существуют объекты слишком малые, чтобы быть видимыми невооруженным гла­зом, но есть еще и живые объекты этого сор­та. Широкая новая территория открылась для биологии в целом перед изумленным взглядом человека, и родилась микробиология — изу­чение организмов слишком малых, чтобы быть видимыми.

В 1763 г. ван Левенгук заметил беглые проблески творений еще меньших, чем простейшие. Его описания были неясны, но он был первым в истории, кто увидел объекты, которые позже стали называть бактериями.

Последним значимым открытием эры ван Левенгука стало обнаружение английским ученым Робертом Хуком (1635 — 1703) расти­тельных клеток в пробковой ткани. Роберт Хук был заворожен работой с микроскопом и в 1665 г. опубликовал книгу «Микрогра­фия», в которой сделал замечательные ри­сунки по своим наблюдениям. Термин «клет­ка» был впервые введен именно им.

Микроскопия продолжала путь через XVIII в., но микроскоп достиг лимита сво­ей эффективности. Лишь в 1773 г., спустя почти сотню лет после открытий ван Левен­гука, датский микробиолог Отто Фридрих Мюллер (1730 — 1784) увидел и подробно описал различные по форме бактерии.

Одним из недостатков ранних микроско­пов было расщепление в них белого света на разные составляющие. Малые объекты были окружены цветными кругами (явление хро­матической аберрации), которые затрудняли рассмотрение деталей. Около 1820 г. были изобретены «ахроматические микроскопы», которые не давали цветных колец. На про­тяжении XIX в. микроскоп проложил дорогу новым и удивительным областям науки.



Глава 4

 Классификация жизни

Спонтанное размножение

Открытия, сделанные благодаря микро­скопу, высветили различия между живой и неживой материей. Вновь стали актуальны­ми вопросы, которые казались закрытыми. Эти вопросы касались возникновения жизни или, по крайней мере, простых ее форм.

В то время как легко увидеть, что чело­веческие существа и большие животные воз­никли из материнских организмов либо из яиц, с малыми формами жизни все не так просто. До недавнего времени считалось, что такие существа, как черви и насекомые, вы­растают из разлагающегося мяса и прочих «испорченных» субстанций.

Подобное возникновение жизни из нежи­вого называлось спонтанным размножением. Классический пример очевидности существо­вания спонтанных генераций — возникнове­ние личинок из разлагающегося мяса.

Очевидно, что эти червеобразные организ­мы формируются из «ничего». Одно из исключений — наблюдения Харви, который утверждал в своей книге, что такие организ­мы возникают из яиц («семян»), которые слишком малы, чтобы их увидеть.

Итальянский врач Франсиско Реди (1626—1697) был впечатлен работами Хар­ви и решил проверить эти предположения. В 1668 г. он приготовил восемь колб с раз­личными видами мяса внутри. Четыре из них запечатал, а четыре оставил на возду­хе. Мухи могли лететь только на открытые колбы. Мясо внутри закрытых колб разло­жилось, но личинки мух не развились. Реди повторил эксперимент, накрыв некоторые из колб газовой тканью. В таком случае в кол­бы был доступ воздуха. И вновь в этих кол­бах не развивались личинки.

Итак, личинки возникали не из мяса, а из яиц, отложенных мухами. Концепция спонтанного размножения была поколебле­на. Однако наблюдения ван Левенгука над простейшими опять-таки отвергли экспери­мент Реди. И мухи, и личинки были доста­точно сложными организмами, хотя и более простыми, чем человек. Простейшие, реши­ли современники, могли развиться спонтан­но. В экспериментах из питательной среды, поставленной в отстой, вскоре в больших количествах возникали простейшие. Спон­танное размножение стало предметом дис­куссии, которая достигла наибольшей остро­ты в XVIII и XIX вв. То была битва веков: виталисты — против механистов.

Философия витализма началась с немец­кого врача Георга Эрнста Сталя (1660 — 1734). Он прославился своей теорией «фло­гистона», вещества, которое могло гореть, как дерево, и ржаветь, как железо. Сталь полагал, что при горении и ржавении фло­гистон высвобождается, улетая в атмосферу. Тот факт, что ржавчина прибавляла метал­лу вес, некоторые объясняли отрицательным весом флогистона. Когда он терялся, металл вырастал в весе. Теория казалась химикам весьма привлекательной и была принята большинством из них.

Однако в 1707 г. Сталь опубликовал кни­гу, посвященную медицине. Он утверждал, что живые организмы подчинены не физи­ческим законам, а законам совсем иного толка. Оппонировал ему голландский врач Герман Буерхаав (1668 — 1738), наиболее из­вестный в медицинских кругах человек сво­его времени. В своем анатомическом по теме труде он утверждает, что тело человека под­чиняется законам физики и химии.

Для механистов, к которым он принадле­жал, законы природы были одинаковы при­менительно как к живой, так и к неживой природе, служили мостиком между ними. Если бы удалось показать, что микроорга­низмы возникают из неживой материи, то эта небольшая пропасть была бы преодолена и мост завершен в своем строительстве.

Виталистическая точка зрения утверждала, что, какими бы простыми ни были формы жизни, между ними и неживой природой — непреодолимая преграда. Спонтанные генера­ции невозможны.

В XVIII в. сыграли свою роль и религи­озные взгляды. Библия описывала спонтан­ное происхождение видов в нескольких своих пассажах, поэтому многие виталисты (обычно консервативные в религии) сочли необходимым согласиться с возможностью спонтанного воспроизведения жизни.

В 1748 г. английский натуралист Джон Нидхэм (1713—1781), католический свя­щенник, опять-таки в опыте с прокипячен­ным мясом, сделал вывод, что личинки и микроорганизмы возникли из мертвой мате­рии, раз мясо кипяченое (стерилизованное). Он решил, что факт спонтанных генераций доказан.

Скептический взгляд на этот вопрос испо­ведовал итальянский биолог Ладзаро Спалланцани (1729—1799). Он поместил стери­лизованное мясо в колбу и запечатал ее. Микроорганизмы не появлялись. Вопрос ка­зался исчерпанным, однако сторонники спон­танного размножения и здесь нашли лазейку. Они заявили, что в воздухе носится «жизнен­ный принцип», который рождает жизнь в не­живом. Он непостижим. Кипячение по Спалланцани убило этот жизненный принцип, заявили они.

Вплоть до окончания следующего века во­прос оставался открытым.

Классификация организмов

Основным аргументом в пользу спонтан­ных генераций был вопрос классификации; то есть, возможно было либо поместить жи­вое отдельно от неживого, либо оформить классификацию как серию градаций. XVII и XVIII вв. стали свидетелями классификации различных форм, существующих в жизни, и на грани их высветились противоречия еще более сложные, нежели по спонтанным гене­рациям; противоречия, пик которых пришел­ся на XIX в.

Для начала формы жизни могут быть раз­делены на отдельные виды; но сложность со­стоит в определении термина «вид». В общем, и целом вид — это группа особей, свободно скрещивающихся между собою, ко­торые могут приносить здоровое потомство, в свою очередь способное скрещиваться. Та­ким образом, все человечество, сколь бы ни были велики различия между отдельными группами, способно свободно скрещиваться и производить относительно здоровые поко­ления. С другой стороны, слон индийский и слон африканский, сколь бы схожими они ни были, — это отдельные виды, поскольку самец одной группы не может быть скрещен с самкой другой группы.

Аристотель когда-то перечислил пятьсот видов животных, а Теофраст — столько же видов растений. С тех пор в течение двух тысяч лет было открыто бесчисленное множество видов. К 1700 г. были описаны де­сятки тысяч видов.

Но сколь много ни было бы открыто ви­дов, всегда существовало искушение сгруп­пировать их в подобные.

Первым сделал попытку в данном на­правлении английский натуралист Джон Рэй (1628-1705).

В период 1686—1704 гг. он опубликовал трехтомную энциклопедию жизни растений, в которой описал 18 600 видов. В 1693 г. подготовил энциклопедию жизни животных, в которой, однако, было рассмотрено уже меньше видов, но предпринята попытка группировки видов — на основе общности копыт (пальцев) конечностей и зубов.

К примеру, он разделил млекопитающих на две большие группы: с пальцами на конечностях и с копытами. Копытных он подразделил на непарнокопытных (лоша­дей), парнокопытных (крупный рогатый скот) и трехчленнокопытных (носороги). Парнокопытные, в свою очередь, подраз­делялись на: жвачных, имеющих постоян­ные рога (козы); жвачных, с периодически сбрасываемыми рогами (олени); нежвачных (свиньи).

Система классификации Рэя не прижилась, но была взята на вооружение шведским нату­ралистом Карлом фон Линнеем (1707— 1778), Известным иод латинизированным именем Каролус Линиеус. К тому времени число из­вестных видов живых организмов достигло 70 тысяч; в 1732 г. Линней, пропутешествовав 4600 миль по Северной Скандинавии, обна­ружил в этом не самом плодородном регионе 100 новых видов.

В колледже Линней исследовал органы размножения растений, отметил, чем они от­личаются от вида к виду, и попытался осно­вать свою систему классификации. В 1735 г. он опубликовал «Систему природы», в ко­торой описывал систему классификации ви­дов — прямую предшественницу системы, принятой сегодня.

Таким образом, была основана наука так­сономия, изучение классификации видов жи­вых существ.

Линней систематически сгруппировал по­добные виды в роды (от латинского «раса»), порядки, классы. Все известные виды живот­ных были сгруппированы в шесть классов: млекопитающие, птицы, рептилии, рыбы, насекомые и червеобразные. Эти подразделе­ния не столь хороши, как у Аристотеля, но недостатки их легко восполнимы.

Каждому виду, по Линнею, давалось двойное латинское имя; оно состоит: 1) из рода, к которому вид принадлежит; 2) из собственного имени. С тех пор такая биноми­альная номенклатура закрепилась; она дала в руки биологам международный язык, пре­дотвращающий недоразумения. Вид челове­ка, живущий ныне на Земле, Линней назвал именем, закрепившимся с тех пор, — Homo sapiens.





Приближение к теории эволюции

По классификации Линнея, группы, ши­рокие и узкие, выглядят как дерево жизни. Случайно ли закрепилась такая классифика­ция?

Могли ли два тесно связанных вида раз­виться от общего предка и могли ли два тес­но связанных предка видов развиться от еди­ного примитивного предка?

Для самого Линнея, религиозно настроен­ного человека, верящего а слово Библии, само такое предположение было святотат­ством. Он настаивал на том, что каждый отдельно созданный Божественным Провидением, им же и поддерживался. Его система классификации подтверждала это ве­рование, ибо была основана на внешнем сходстве и не предполагала возможных вза­имосвязей.

Однако это не отвратило других ученых от попыток предположить некую эволюцию (это слово стало популярным только в сере­дине XIX в.). По этой теории, один вид раз­вивался от другого; сама классификация отражала естественные взаимосвязи между видами. (В конце жизни и сам Линней стал предполагать, что новые виды могут возни­кать в результате гибридизации.)

Даже французский натуралист Жорж Луи Леклерк (1707 — 1788), большой консерватор, не мог не дать хода такому предположению.

Леклерку принадлежит сорокатомная эн­циклопедия по естественной истории, попу­лярная в его время, но разнородная по составу. В ней он указывает, что у многих видов имеются части тела, не используемые ими (рудименты), например два рудиментар­ных пальца по бокам копыта у свиней. Раз­ве нельзя допустить, что когда-то эти пальцы функционировали? Может быть, человекооб­разная обезьяна развилась в человека, а осел дегенерировал из лошади?

Английский врач Эразм Дарвин (1731\" 1802) писал длинные поэмы на темы ботани­ки и зоологии. Он принимал как систему Линнея, так и эволюционные изменения. Однако эти взгляды были бы забыты сегодня, если бы не тот факт, что Эразм Дарвин был дедом Чарлза Дарвина, доработавшего эволюционную теорию.

Приход Французской революции год спус­тя после смерти Леклерка потряс Европу. Ста­рые ценности пошатнулись; стало возможным принятие новых невероятных теорий, эволю­ционных доктрин. Несколько десятилетий спустя французский натуралист Жан Батист де Мане шевалье де Ламарк (1744 — 1829) вновь занялся теорией эволюции.

Ламарк сгруппировал первые классы Линнея (млекопитающие, птицы, рептилии, рыбы) в большую группу позвоночных, а другие два класса — насекомые и черви — беспозвоночных. Ламарк трудился над тем, чтобы наилучшим образом упорядочить классы и группы. Он, в частности, разделил восьминогих паукообразных и шестиногих насекомых; ракообразных и морских звезд.

В период между 1815-м и 1822 гг. Ламарк опубликовал гигантский семитомный труд «Естественная история беспозвоночных», ко­торый лег в основу современной зоологии беспозвоночных. Эта работа заставила его прийти к мысли о возможности эволюции; он опубликовал свои соображения по этому поводу в 1801 г., а затем более детально их проработал в 1809 г. в книге «Зоологическая философия». Ламарк предположил, что используемые органы растут в течение всей жизни, повышая свою эффективность; и дегенерируют, соответственно, если не используются. Эта особенность их развития либо дегенерации, передаваемая потомству, теперь именуется наследственно приобретенными характеристиками.

На примере жирафа он вывел возмож­ность приобретенных, ранее неизвестных ха­рактеристик. Постепенно, по мере использо­вания шеи, ног, языка, антилопа все более наращивала их и передавала потомству. В конечном счете антилопа превратилась в жирафа.

Однако в истории существовало одно сла­бое звено: не только не было очевидным на­следование этих характеристик, но все фак­ты говорили против этого.

Как быть с пятнистой шкурой жирафа, которая служит естественным камуфляжем? Как она появилась из однородной шкуры антилопы?

Ламарк умер в нищете, всеми забытый, забыта была и его теория. Но она сослужи­ла службу тем, кто пошел следом. Один тот факт, что эволюция вышла на арену борьбы мнений, уже был значителен. Позже шансов могло и не представиться.



Геология как основа

Наибольшая трудность, которая стояла на пути всех эволюционных теорий, — это нич­тожная скорость изменений. В памяти чело­вечества не осталось примеров превращения одного вида в другой. Если такой процесс и имел место, он должен был быть исключи­тельно медлительным, может быть затянув­шимся на сотни тысяч лет. Во времена Сред­невековья и нашего времени европейцы знали только слово Библии и полагали, что нашему миру 6 тысяч лет. Для эволюции это временное пространство ничтожно.

В 1785 г. произошло изменение. Джеймс Хаттон (1726 — 1797), шотландский врач, воспринимавший геологию как хобби, опуб­ликовал свою книгу «Теория происхождения Земли». В ней он привел обзор изменений, которые производят на земной поверхности вода, ветер и прочие климатические факто­ры. Он также указывал на медлительность, на непрерывность таких процессов, как горо­образование, прокладка реками долин и ка­ньонов. Если учитывать скорость прохожде­ния таких изменений, возраст Земли должен был бы насчитывать миллионы лет.

Эта новая концепция возраста Земли по­началу встретила крайне враждебный прием, однако вскоре именно она объяснила нахож­дение во все большем масштабе ископаемых останков животных, получивших тогда боль­шую известность.

Казалось невероятным, чтобы каменистые формы могли скопировать формы живые случайно; объяснение могло быть одно: та­кие животные когда-то существовали. Мно-гие сразу предположили, что эти существа были уничтожены Всемирным потопом. Но если Земля так стара, как предположил Хаттон, останки могли быть исключительно дав­него возраста, и костный материал в них постепенно заменился каменистым.

Новый взгляд на проблему пришел с Уильямом Смитом (1769 — 1839), англий­ским геологом. Он прокладывал каналы (ко­торые тогда строили в массе), а следователь­но, имел возможности для раскопок. Он ввел латинский термин <<страта>> для ровных слоев, которыми ложились разные типы по­род. Он отмечал, что каждый слой имел свою собственную характерную форму иско­паемых биологических остатков, неповторя­емую в других слоях. Не важно, какими складками ложился слой, но он удерживал свои характерные ископаемые остатки, даже исчезая на некоторое время из виду и появ­ляясь в другом месте.

Смит научился идентифицировать назва­ние и приблизительный возраст слоев по биологическому содержимому.

Если его воззрения верны, то можно пред­положить, что геологические слои лежат в та­ком порядке, как сформировывались, и чем глубже залегает слой, тем он древнее. И по возрасту слоя можно определить возраст иско­паемого животного.

Ископаемые животные привлекли внима­ние французского биолога Жоржа Леопольда Кювье (1769—1832). Кювье изучил анатомию ископаемых животных и произвел их сравне­ние, систематически отмечая отличия и сходство. Тем самым он основал сравнительную анатомию.

Эти исследования дали возможность Кю­вье изучить необходимые взаимосвязи частей тела так, чтобы из факта присутствия одних костей можно было вывести форму других: тип мускулатуры и прочее. В конечном ито­ге он смог реконструировать приблизитель­ную форму, размеры и внешний вид ископа­емого животного.

Кажется вполне естественным интерес анатома к классификации видов. Кювье рас­ширил и дополнил систему Линнея, сгруп­пировав классы последнего в еще большие группы. Одну из групп он назвал, по Ламарку, позвоночные. Не интересуясь беспоз­воночными существами, Кювье разделил их всех на три большие группы: членистоногие (насекомые и ракообразные); моллюски и лучевые (прочие).

Все это — большие группы, именуемые теперь отрядами. В наше время к выделен­ным Кювье прибавились три дюжины других отрядов — как растений, так и животных. К позвоночным теперь отнесли еще примитив­ных животных с хордой вместо костной тка­ни, так называемых хордовых.

И вновь, из-за интереса к сравнительной анатомии, Кювье основал свою собственную систему классификации на структурах и их Функциях, а не на поверхностных сходных чертах, как когда-то Линней. Кювье создавал свою систему классификации применительно к животным. В 1810 г. швейцарский ботаник Агустин Пирамус де Кандоле (1778 — 1841) применил ее к растениям.

К ископаемым Кювье применил свою сис­тему классификации, аналогичную ныне существующей. Таким образом, Кювье стал первопроходцем в науке палеонтологии — изучении древних форм жизни.

Ископаемые животные, по Кювье, нагляд­но представляют собой эволюцию животно­го мира. Чем древнее ископаемое, тем более оно отличается от существующих форм жиз­ни, и некоторые можно расположить в по­рядке, демонстрирующем постепенное изме­нение внешних форм в природе.

Однако сам Кювье не принимал воз­можности эволюции. Поэтому он разработал теорию катастроф, которые периодически потрясали Землю и опустошали видовое разнообразие. После каждой такой катаст­рофы появлялись новые формы жизни, со­вершенно отличные от прежних. Современ­ные формы (включая человека) появились после последней катастрофы. С этой точки зрения можно было примирить новые от­крытия и библейскую историю.

Кювье считал, что для объяснения изве­стных ископаемых форм должно было про~ изойти четыре земных катастрофы. Но появ­лялись все новые находки, и их уже не могли объяснить четырьмя катастрофами. По­следователи Кювье насчитывали уже 27 ка­тастроф.

Теория катастроф не состыковывалась с «униформитаризмом» Хаттона. В 1830 г. шотландский геолог Чарлз Лайель начал публикацию трехтомного труда «Принципы геологии», в котором популяризировал тео­рию Хаттона и постулировал, что Земля про­ходила только постепенные и некатастрофич­ные изменения. В самом деле, некоторые виды неизменными дошли до нас из глуби­ны веков, а некоторые находились в геоло­гических слоях, принадлежащих нескольким периодам.

Катастрофизм изжил сам себя. Он был последним оплотом в битве против теории эволюции, и, когда он пал, возникла необ­ходимость в концепции эволюции. К середи­не XIX в. созрели условия для формулиро­вания такой концепции.



Глава 5

Составные части организмов и клетки

Газы и жизнь



В то время как виды на протяжении их изучения постоянно подвергались классифи­кации, наука о жизни получила новое и ис­ключительно плодотворное направление. Хи­мия вступила в свой революционный период, и химики начали применять технологии к живым организмам так же, как и к неживым системам. То, что эти понятия находят прак­тическое применение, доказала теория пище­варения.

Переработка пищи животными организма­ми — процесс, относительно открытый для исследования. Он происходит не внутри са­мих животных тканей, а в пищеварительных каналах, выходящих во внешний мир. Этот процесс проходит непосредственно через ро­товую полость. В XVII в. горячо обсуждал­ся вопрос о том, является ли пищеварение физическим процессом (как полагал Борелли), при котором желудок перемалывает пищу, или химическим, при котором желу­док изменяет ее химически посредством же­лудочных соков (как полагал Сильвиус).

Французский физиолог Репе Антуан де Реомюр (1683—1757) исследовал способы тестирования. В 1752 г. он провел экспери­мент: поместил сырое мясо в малый метал­лический цилиндр, открытый с обоих кон­цов, но с защитной металлической сеткой (мясо не могло вывалиться), и скормил ци­линдр коршуну. Через металлическую сетку мог проникать желудочный сок. Металл ци­линдра защищал мясо от любого механичес­кого воздействия. Обычно коршуны отрыги­вают любое инородное тело, оказавшееся в пищеводе, аналогичным образом поступил и подопытный коршун. При анализе мясо, на­ходившееся в цилиндре, оказалось частично разложившимся.

Реомюр не остановился на достигнутом: он скормил коршуну губку, из которой по­сле отрыгивания были выделены пропитав­шие ее желудочные соки. Их смешали с мя­сом. Мясо медленно, но разложилось под действием соков. Таким образом, спорный вопрос был прояснен. Пищеварение было объявлено процессом химическим, а значе­ние в жизни химии сильно возросло в гла­зах человечества.

В XVIII в. ван Хельмонт начал интенсив­но изучать газы. Необходимость изучения Давно назрела. Английский ботаник и химик Стивен Хейлз (1677 — 1761) стал одним из основных авторитетных исследователей в данной области. В 1727 г. он опубликовал книгу, в которой описывал эксперименты по измерению скорости роста растения, а так­же давления соков в тканях. Он стал одним из основателей физиологии растений. Он эк­спериментировал с разнообразными газами и первым выяснил, что один из них, дву­окись углерода, вносит большой вклад в пи­тание растений. В этом он дополнил точку зрения ван Хельмонта о составе тканей ра­стений.

Следующий шаг был предпринят английским химиком Джозефом Пристли (1733— 1804) почти сто лет спустя. В 1774 г. он открыл газ, названный кислородом и обнаружил экспериментально, что им приятно и легко ды­шится и что, в частности, подопытные мыши исключительно резвы, будучи помещены в кислород под колокол. Далее последовало открытие, что растения увеличивают содержа­ние кислорода в воздухе. Голландский физиолог Жан Ингенхуз (1730—1799) дополнил его открытием, что растения производят кис­лород и поглощают углекислый газ только на свету.

Величайшим химиком того прославленного века стал француз Антуан Лоран Лавуа­зье (1743 — 1794). Он подчеркивал важность точных измерений и использовал их для раз­работки теории горения, которой с тех пор пользуются в химии. По этой теории, горе­ние — это процесс химического соединения горючего материала с кислородом воздуха. Он также доказал состав воздуха: кроме кис­лорода, в него в основном входит азот — газ, не поддерживающий горения.

«Новая химия» Лавуазье положила нача­ло практическому приложению химии. Ког­да под колоколом горит свеча, потребляется кислород воздуха и возрастает содержание углекислого газа. Последнее вещество обра­зуется посредством соединения кислорода с углеродом. Как только содержание кислоро­да под колоколом падает до критически низ­кого, свеча гаснет.

Аналогична ситуация с животной жизнью. Мышь, помещенная под колпак, потребляет кислород и производит углекислый газ; пос­ледний образуется в результате соединения углерода тканей с кислородом. Поскольку содержание кислорода внутри колпака пада­ет, мышь погибает от удушья. Если оценить эту ситуацию в целом, то растения потребля­ют углекислый газ и производят кислород, а животные, наоборот, потребляют кислород и производят углекислый газ.

Таким образом, вместе растения и живот­ные поддерживают химическое равновесие, и в обозримом будущем соотношение в атмос­фере кислорода (21 %) и углекислого газа (0,03 %) останется стабильным.

Поскольку свеча и животное воздейство­вали на суммарную атмосферу под колпаком одинаково, Лавуазье резонно предположил, что дыхание является формой горения. Таким образом, когда потребляется определен­ное количество кислорода, выделяется опре­деленное количество тепла — будь то свеча или мышь. Хотя измерения были, принимая во внимание возможности того века, достаточно грубыми и приблизительными, но они подтверждали теорию.

Тем самым был нанесен мощный удар по механистическому пониманию жизни: выяс­нилось, что в живой и неживой природе идут одни и те же химические процессы. Однако тем очевиднее становилось, что живой и не­живой природой управляют одни и те же за­коны, на чем настаивали сторонники механи­стической теории.

Точка зрения Лавуазье укрепилась по мере развития физики в первой половине XIX в. В то время тепло и тепловая теория исследо­вались несколькими учеными, чей интерес был «подогрет» растущим значением парово­го генератора. Тепло можно было заставить совершать работу, с ним связаны и другие фи­зические явления: например, падение тел, те­чение воды, движение воздуха, свет, электри­чество, магнетизм и т. д. В 1807 г. английский физик Томас Янг (1773 — 1829) предложил для представления обо всех этих явлениях термин «энергия». По-гречески это слово оз­начает «работа, совершаемая изнутри».

Физики первой половины XIX в. занялись изучением того, каким образом одна форма энергии может трансформироваться в другую; производили точные измерения таких изменений. К 1840-м годам по меньшей мере трое ученых выдвинули концепцию «сохранения энергии». Это были: англичанин Джеймс Прескотт Джоуль (1818 — 1889) и немцы Юлиус Роберт фон Мейер (1814 — 1878) и Герман Людвиг Фердинанд фон Гельмгольц (1821 — 1894). В соответствии с этой концепцией, одна форма энергии свободно переходит в другую; однако общее ее количество в процессе пере­хода нельзя ни увеличить, ни уменьшить.

Для такого общего закона, основанного на широком разнообразии точных измерений, было бы естественным базироваться как на примерах живой природы, так и неживой. Тот простой факт, что ни одно живое суще­ство не может поддерживать жизни, не чер­ная энергию из пищи, доказывал, что энер­гия не получается «из ничего». Растения не едят и не дышат аналогично животным, од­нако они черпают энергию из света.

Именно Мейер установил, что источником разных форм энергии на Земле является ради­ация и тепло Солнца; аналогично растениям, потребляющим энергию Солнца непосред­ственно, животные организмы потребляют ее же в виде пищи. Прямым источником энергии для растений и — через растения — для жи­вотных является энергия Солнца.

Эти смутные догадки росли в числе и ут­верждались, пока во второй половине XIX в. не было доказано, что закон сохранения энер­гии так же строго приложим к живой приро­де, как и к неживой.

Органические компоненты

Виталистическая позиция все еще остава­лась сильной. Будь необходимо признать, что закон сохранения энергии остается в силе как для живых, так и для неживых си­стем либо что все организмы потребляют кислород и производят углекислый газ од­ним и тем же способом, — то это и было бы единственным обобщением. Однако внутри этого обобщения оставались бы детали во всех своих противоречиях.

И все же разве не может быть, чтобы жи­вые организмы, хотя и состоящие из мате­рии, были бы сделаны из материи иного рода, нежели неживой мир? На этот вопрос даже не нужно отвечать.

Такие вещества, которые содержатся в по­чве, море, воздухе, тверды, стабильны и не­изменны. Вода, будучи подогретой, закипает и испаряется, но пар вновь можно остудить и превратить в воду. И железо, и соль мож­но перевести в жидкое состояние, как и вновь сделать твердыми, В то же время ве­щества, получаемые из живых организмов — растений, — например, сахар, бумага, рас­тительное масло, — характеризуются теми же непрочностью и нежностью консистен­ции, которыми обладали их содержащие организмы. При нагревании они дымятся, сгорают и тем самым претерпевают необра­тимые изменения; дым и пепел бумаги не обратятся в бумагу вновь. Значит, можно предположить, что мы имеем дело с двумя различными вариациями материи.

Шведский химик Йене Якоб Берцелиус (1779 —1848) предложил в 1807 г. вещества, получаемые из живых (либо когда-то бывших живыми) организмов, называть «органически­ми веществами», а иные — «неорганическими веществами». Он предположил, что, в то вре­мя как возможно конвертировать (и достаточ­но легко) органические вещества в неорга­нические, обратное изменение невозможно. Чтобы это изменение произошло, должна при­сутствовать некая живая сила, которой харак­теризуется лишь живая материя.

Такая точка зрения, однако, долго не про­существовала. В 1828 г. германский химик Фридрих Веллер (1800 — 1882) при исследо­вании цианидов нагревал цианат аммония, считавшийся неорганическим компонентом, и обнаружил, к своему изумлению, в продук­те реакции кристаллы мочевины. Мочевина была главным твердым составляющим чело­веческой мочи и определенно органическим компонентом.

Это открытие воодушевило других уче­ных на то, чтобы синтезировать органичес­кие вещества из неорганических, и вскоре пришел успех. Французский химик Пьер Эжен Марселей Бертло (1827 — 1907) окон­чательно разрушил стену между органичес­кими и неорганическими веществами. Он синтезировал некоторые хорошо известные органические вещества, например метиловый спирт, этиловый спирт, метан, бензол, аце­тилен, из чисто неорганических веществ.

Химические формулы трех классов органических веществ, гидрокарбонат, липид, протеин.

С развитием соответствующих аналити­ческих методик в первых декадах XIX в. хи­мики обнаружили, что органические веще­ства состоят главным образом из углерода, водорода, кислорода и азота. Вскоре они вы­явили и последовательность сочетания ато­мов, при котором эти вещества приобретают свойства органической субстанции.

Во второй половине XIX в. появилось уже множество синтезированных органических ве­ществ; органическая химия не оставалась бо­лее наукой о веществах, образованных жиз­ненными формами. Однако деление химии как науки на две части оставалось; только органи­ческая химия стала именоваться «химией уг­леродных соединений». Жизнь как таковая уже не связывалась с ней.

И все же для виталистов оставалось нема­лое поле боя. Синтетические органические вещества были в XIX в. достаточно просты­ми. В живой материи наличествовали столь сложные вещества, что ни один тогдашний химик не решился бы их воспроизвести.

Более сложные вещества распадаются на три общие группы, как показал англий­ский физиолог Уильям Прут (1785-1850). В 1827 г. он впервые назвал эти группы: гидрокарбонаты (углеводы), липиды (жиры), протеины (белки). Гидрокарбонаты, вклю­чающие сахара, крахмаль!, целлюлозу, со­ставлены из углерода, водорода и кислорода, как и липиды (включающие жиры и масла). Гидрокарбонаты, впрочем, относи­тельно богаты кислородом, в то время как липиды бедны им. Гидрокарбонаты либо ра­створимы в воде, либо растворимы первона­чально в кислотах, в то время как липиды нерастворимы в воде.

Протеины, однако, наиболее сложные из этих трех групп, наиболее легко разрушае­мые, а также являют собой саму характерис­тику жизни. Протеины содержат азот и серу, а также углерод, водород, кислород и, хотя обычно растворимы в воде, коагулируют и становятся нерастворимыми при общем нагре­вании. Поначалу их называли альбуминопо-добными субстанциями, поскольку единствен­ным общеизвестным примером был белок куриного яйца (по-латински «альбумин»). В 1838 г. голландский химик Жерар Джоан Мюльдер, понимая первозданную важность альбумина, назвал протеины этим словом, ко­торое является калькой с греческого оборота «имеющий первостепенную важность».

В XIX в. виталисты сфокусировали вни­мание и надежды не просто на органических веществах, но на молекуле протеина.

Развивающаяся органическая химия так­же внесла вклад в эволюционную концеп­цию. Все виды живых организмов состоят из тех же самых классов органических веществ: гидрокарбонатов, липидов, протеинов. Они различаются от вида к виду, но различия малы. Образно выражаясь, кокосовая пальма и корова — существа совершенно разные, но масло кокосовое и коровье отличаются лишь в некоторых деталях.

Более того, ученым в середине XIX в. ста­ло ясно, что сложную структуру гидрокарбонатов, липидов, протеинов можно в процессе пищеварения разложить на относительно про­стые «кирпичики». Эти кирпичики одни и те же для всех видов, и все отличия сосредотачи­ваются в способе их комбинации. В процессе потребления одним организмом других (про­цессе пищеварения) кирпичики складываются в сложные вещества, которые и составляют суть питания.

С химической точки зрения, жизнь во всех вариациях, несмотря на разительные внешние различия, одна и та же. А если так, то эволюционные изменения одних видов в другие — дело деталей, и эта точка зрения утвердила правдоподобность эволюционной концепции.

Ткани и эмбрионы

Ни биолог, ни химик не должен зависеть от чего-либо чуждого жизни, чтобы сделать заключение о единстве всего живого. Разви­вающееся техническое усовершенствование микроскопа наконец-то сделало тайны жиз­ни видимыми.

Первые «микроскописты», увлекшись мно­гочисленными деталями, начинали фантазировать. К примеру, они переносили в действи­тельность нарисованные своим воображением человеческие фигуры (гомункулусы) в очерта­ния человеческого семени.

Они также предположили, что разреши­тельной способности жизни в мельчайших ее формах нет предела. Если яйцо иди спермато­зоид уже заключает в себе крошечную жизнь, то в оболочке мельчайшего организма может быть заключен организм еще более мелкий, который в определенный момент станет от­прыском родительского и продолжит это дробление до бесконечности. Некоторые уче­ные даже пытались подсчитать, сколько имен­но гомункулусов может содержаться внутри бесконечно уменьшающихся, вложенных друг в друга фигур самовоспроизводящихся орга­низмов. Они гадали, не придет ли конец чело­вечеству, когда истощатся эти заключенные внутри друг друга генерации. Эта доктрина «преформации» стала антиподом эволюцион­ной доктрины; следуя ей, все возможные чле­ны видов уже существовали изначально внутри первого вида, и нет причины предпола­гать изменение (эволюцию) видового разнооб­разия в природе.

Главная и первая атака на эту теорию по­следовала со стороны немецкого физиолога Каспара Фридриха Вольфа (1734 — 1794). В опубликованном в 1759 г. труде он описы­вал свои наблюдения за развитием растений. Он отмечал, что конус роста побега растения состоит из недифференцированных, генерализованных структур. По мере роста ткани специализируются, и самый кончик конуса наконец-то развивается в цветочную почку, в то время как другая точка роста (полнос­тью неразличимая вначале) развивается в листовую почку. Позже он экстраполировал свои наблюдения на животный мир. Недиф­ференцированная ткань через этапы посте­пенной специализации дает начало росту различных абдоминальных органов. Это и была доктрина эпигенеза, впервые названная так Уильямом Харвеем в 1651 г. в его книге по эмбриогенезу животных.

С его точки зрения, все существа, на­сколько бы различно они ни выглядели, на начальной стадии развиваются из сгустков живой материи и сходны по происхождению. Живые существа не могут развиваться пусть из крошечного, но уже специализированно­го органа или организма.

Даже полноразвитые организмы не столь различны, как может показаться при деталь­ном изучении. Французский физиолог Мари Франсуа Ксавье Биша (1771 — 1802), работая с микроскопом, показал, что различные органы состоят из нескольких компонентов разного внешнего вида. Эти компоненты, наименованные «тканями», стали основой науки гистологии. Выяснилось, что суще­ствует ограниченное число видов тканей. (Самые жизненно важные из них в живот­ном организме — эпителий, соединительная ткань, мускульная ткань и нервная ткань.)

Все органы состоят из каких-либо тканей. Если внешне живые организмы сильно отли­чаются, то ткани у них у всех одни и те же.

Как было уже упомянуто выше, еще в XVII в. Хук отметил, что пробковая ткань делится -на некие прямоугольные составля­ющие, которые Хук назвал клетками. Клет­ки были пустотелыми, поскольку пробка — мертвая ткань. Более поздние исследовате­ли, изучая живую ткань, пришли к выводу, что и она состоит из крошечных, окружен­ных степками клеток.

В живой ткани клетки не пустотелые и на­полнены желатиноподобной жидкостью. Эта жидкость получила свое наименование бла­годаря чешскому физиологу Яну Эвангелисте Пуркине (1787-1869). В 1839 г. он назвал живой эмбриональный материал, за­ключенный в яйце, протоплазмой, что в пе­реводе с греческого означает «первичная». Немецкий ботаник Хуго фон Мол в следую­щем году ввел этот термин в общее употреб­ление. Хотя уже было известно, что клетки тканей отнюдь не пустотелые, этот термин сохранился.

Клетки все чаще обнаруживали в различ­ных тканях, и биологи постепенно признали их универсальность. Это решение выкрис­таллизовалось в 1838 г., когда немецкий бо­таник Маттиас Якоб Шлейден (1804—1881) в своем труде написал, что все растения со­стоят из клеток и что клетка — это универ­сальная единица жизни; что именно из единственной клетки вырастает весь живой орга­низм.

В следующем году немецкий физиолог Теодор Шванн (1810—1882) продолжил эту идею. Он указал, что все животные, так же как растения, состоят из клеток; что каждая клетка окружена мембраной, отделяющей ее от остального мира. Обычно Шлейден и Шванн считаются отцами клеточной теории, хотя в нее внесли вклад и другие ученые, и с их имен начинается наука цитология.

Предположение, что клетка является пер­вичной ячейкой жизни, приведет к следую­щему предположению: если это так, то для того, чтобы она была живым организмом, не нужны конгломераты в виде множества кле­ток. Немецкий зоолог Карл Теодор Эрнст фон Зибольд (1804 — 1885) показал, что не­которые клетки и в самом деле способны к независимому существованию.

В 1845 г. Зибольд опубликовал работу по сравнительной анатомии, которая в деталях рассматривала протозоа (простейших) кро­шечных животных, впервые обнаруженных ван Левенгуком. Каждая клетка простейшего была окружена единой мембраной, и внутри этой клетки имелись все приспособления, не­обходимые для жизни. Она поглощала пищу, переваривала ее, ассимилировала и выводила отбросы. Клетка простейшего ощущала окру­жение и соответственно реагировала. Она рос­ла, делилась надвое, воспроизводя себя. Ко­нечно, клетка простейшего больше по размеру и устроена сложнее, чем клетки тканей много­клеточных организмов, — все это необходимо для автономного существования.

Для демонстрации важности индивиду­альных клеток можно использовать много­клеточные организмы. Русский биолог Карл Эрнст фон Байер (1792-1876) в 1827 г. от­крыл внутри граафова фолликула человечес­кую яйцеклетку и продолжил изучать про­цесс пути ее развития в живое существо — зародыш.

Затем он опубликовал двухтомный труд по этой теме, который и стал началом и фун­даментом науки эмбриологии (изучения за­родышей). Он возродил теорию Вольфа по эпигенезу (в свое время совершенно проиг­норированную), более детализированно по­казав, что развивающееся яйцо имеет не­сколько слоев ткани, каждый из которых поначалу не дифференцирован, но из каждо­го слоя развиваются специализированные органы. Эти слои он назвал зародышевыми.

Было решено, что таких слоев три, и в 1845 г. немецкий физиолог Роберт Ремак (1815 — 1865) дал им названия, которыми оперируют по сегодняшний день. Это экто­дерма (от греческого «наружная кожа»), ме­зодерма («средняя кожа») и эндодерма («внутренняя кожа»).

Швейцарский физиолог Рудольф Альберт фон Келликер (1817-1905) указал в 1840-х годах, что яйцеклетка и сперматозоид — это индивидуальные клетки. (Позже немецкий зоолог Карл Гегенбар (1826— 1903) продемон­стрировал, что даже крупные яйца птиц — это всего лишь клетка.) Слияние яйцеклетки и\' сперматозоида формирует оплодотворенное яйцо, которое, как показал Келликер, все еще является отдельной клеткой. Это слияние, или оплодотворение, — начало развития эмбрио­на. Хотя биологи к середине XIX в. сформу­лировали понятие оплодотворения, в деталях оно не было описано. Лишь в 1879 г. швейцар­ский зоолог Германн Фоль наблюдал оплодо­творение икры у рыб.

К 1861 г. Келликер опубликовал учебник по эмбриологии, в котором работа Байера ин­терпретировалась в свете клеточной теории. Каждый многоклеточный организм начинает свою жизнь как одноклеточный — оплодотво­ренное яйцо. По мере многократного деления оплодотворенного яйца получающиеся клетки не сильно отличаются от первоначальной. Однако постепенно они дифференцируются настолько, что начинают напоминать структу­ры взрослого организма. Это эпигенез, реду­цированный до клеточных форм.

Концепция единства жизни постепенно укреплялась. Вряд ли можно было бы обна­ружить различие между оплодотворенной яйцеклеткой человека, жирафа и макрели, но по мере развития эмбриона они постепен­но нарастают. Небольшие структуры в эмб­рионе, поначалу едва различимые, могут раз­виться в одном случае в крыло, в другом случае — в руку, в третьем — в лапу, в четвертом — в плавник. Байер весьма нагляд­но доказал, что взаимосвязи между живот­ными можно проследить в сравнении эмбри­онов разных животных. Поэтому Байер но праву считается основоположником сравни­тельной эмбриологии.

Меняясь от вида к виду, через процесс клеточного развития, шло эволюционное раз­витие животного и растительного миров. Байер показал, что ранние позвоночные эм­брионы обладали нотохордой. Такой струк­турой характеризуются рыбоподобные при­митивные существа. Впервые их описал в 1860-х годах русский зоолог Александр Ко­валевский (1840-1901).

У позвоночных хорду заменил позвоноч­ник. Тем не менее, даже временное наличие хорды доказывает родственность современ­ных позвоночных животным, описанным Ко­валевским. Можно проследить взаимосвязь современных позвоночных, включая челове­ка, с древними хордовыми и их происхожде­ние от общего примитивного предка.

От развития нескольких различных обла­стей — сравнительной анатомии, палеонто­логии, биохимии, гистологии, цитологии и эмбриологии — исходила в середине XIX в. настоятельная необходимость единой эволю­ционной теории. Требовалось выработать удовлетворительный механизм эволюции.



Глава 6 Эволюция

Естественный отбор

Ученым, который открыл научному миру эволюционный механизм, был английский на­туралист Чарлз Роберт Дарвин (1809—1882), внук Эразма Дарвина, упомянутого выше.

В молодости Дарвин пытался изучать меди­цину, а позже подумывал о посвящении в цер­ковный сан; однако ни в том, ни в другом не преуспел. Его единственной страстью было ес­тествознание, натуральная история — увлече­ние, которое переросло в глубокий научный интерес. В 1831 г. он отправился на корабле «Бигль» в кругосветное плавание с научной экспедицией, где ему было предложено место натуралиста.

Это путешествие заняло пять лет, и, хотя во время плавания Дарвин испытывал при­ступы страшной морской болезни, кругосвет­ка сделала из него гениального натуралиста. В истории биологии, благодаря ему, путеше­ствие на «Бигле» также стало самой знаме­нитой исследовательской экспедицией.

Дарвин был почитателем геологических изысканий Льеля и имел научное представ­ление об истории Земли и геологии. Во вре­мя путешествия он не мог не отметить сме­няемости видов — каждый из последующих видов слегка отличался от вытесненного — вдоль побережья Южной Америки по на­правлению к югу.

Наиболее впечатлили его наблюдения за животным миром Галапагосских островов во время пятинедельного пребывания на них. В частности, Дарвин изучал группу птиц рода, до сих пор так и именуемого дарви­новским вьюрком. Представители этого рода делятся на 14 различных видов и все оби­тают на малоизвестной группе островов не­подалеку от побережья Эквадора. Было бы странным предположить, что все 14 видов были «созданы» только для этих островов.

Дарвин обнаружил, что материковые виды вьюрка колонизировали остров задол­го до современных ему лет и что постепенно последующие поколения тех вьюрков разде­лились на близкие друг другу виды. Некото­рые виды специализировались на определен­ных семенах то одного, то другого сорта; третьи начали специализироваться на поеда­нии насекомых. И у каждого вида постепен­но развились своя форма клюва, свой размер тела, своя особая схема организации. На ма­терике первобытный вьюрок не дифференци­ровался, поскольку испытывал пресс конку­ренции со стороны других птиц отличных родов. На Галапагосах пришельцы нашли пустые ниши обитания.

Однако на один вопрос ответа не было. Что вызвало такие эволюционные измене­ния? Что сделало вьюрков из растительноядных насекомоядными? Дарвин не мог вос­принять ламаркианского предположения, что птицы «попробовали» насекомых, им понра­вилось и они передали эту особенность сво­ему потомству. К несчастью, другого ответа у Дарвина не нашлось.

В 1838 г., два года спустя после возвра­щения в Англию, Дарвин случайно прочел научный труд, названный «Эссе о принципах формирования народонаселения», написан­ный 40 годами ранее английским экономис­том Томасом Робертом Мальтусом (1766 — 1834). В своей книге тот утверждал, что народонаселение всегда растет быстрее, чем производство питания, и что численность населения саморегулируется либо голодом, либо болезнями, либо войнами.

Дарвин предположил, что те же принци­пы приложимы к другим формам жизни. Та часть популяции, которая погибает, являет собой естественный отсев в результате борь­бы за пищу. К примеру, первые вьюрки на Галапагосах бесконтрольно размножались и вскоре превысили в потреблении возмож­ный урожай семян. Начался голод. И воз­можно, какие-то вьюрки попробовали есть более крупные семена или начали глотать насекомых. Те, которые не усвоили новых привычек, были обречены на голод и выми­рание.

Другими словами, слепой пресс окружаю­щей среды стал агентом формирования но­вых видов и каждый вид отличался от дру­гого и от общего предка. Как говорится, сама природа выбирает выживших — это и есть естественный отбор.

Далее Дарвин наблюдал, каким образом происходят необходимые изменения. С це­лью изучить влияние искусственного отбора он начал разводить голубей и обнаружил в потомстве небольшие отклонения внешних признаков: вариации по размеру, цвету, при­вычкам. Избирая направленно одну или дру­гую особенность, можно было производить селекцию голубей. Таким же образом выво­дили наилучшие породы овец, лошадей, ро­гатого скота, странные и причудливые поро­ды собак и аквариумных рыбок.

Природа на определенных этапах заменяла человека и в течение более длительного пери­ода в своих целях «выводила» породы — то есть приспосабливала виды к меняющимся условиям среды.

Дарвин изучил также «половую селек­цию», при которой самка выбирала наиболее полноценного самца. Ученый отметил рудиментарность некоторых составных частей скелета, на основе этого доказал принадлеж­ность, например, китов — к млекопитаю­щим, основываясь на оставшихся костях зад­них конечностей, а змей — к позвоночным пресмыкающимся, когда-то ходившим на че­тырех конечностях.

Дарвин бесконечно дополнял и совершен­ствовал свою теорию и набор аргументов в ее пользу. В 1844 г. на основе собранных фак­тов он начал писать научный труд.

Тем временем на Дальнем Востоке дру­гой английский натуралист, Альфред Рассел Уэллес, рассматривал ту же проблему. Как и Дарвин, он провел множество времени за собиранием фактов, включая путешествие в Южную Америку между 1848-м и 1852 гг. В 1854 г., побывав на Малайском архипелаге и в Восточной Индии, он был поражен раз­личием между видами млекопитающих Азии и Австралии. Позже он провел по карте ли­нию, разделяющую эти два зоогеографичес-ких региона. Эта линия, называемая его име­нем, проходит по глубоководному каналу, разделяющему острова Борнео и Целебес.

Уэллесу было ясно, что австралийские виды млекопитающих более примитивны, чем азиатские. Почему они сохранились на Авст­ралийском континенте в неприкосновенности? Уэллес предположил, что Австралийский кон­тинент отделился и отдрейфовал от общего когда-то материка до того, как азиатские виды претерпели эволюцию. Страдая от приступов болезни, Уэллес в два дня письменно изложил свои предположения и отослал их на суд Дарвина. Дарвин был поражен как ударом молнии общностью теорий своей и Уэллеса. В 1858 г. и труд Уэллеса, и выводы Дарвина были опубликованы в «Журнале изысканий Линнеевского общества».

В следующем году Дарвин опубликовал свою книгу «О происхождении видов путем естественного отбора, или Сохранение избран­ных рас в борьбе за выживание». Обычно этот труд известен как «Происхождение видов».

Ученый мир с нетерпением ожидал этот труд. Поначалу было опубликовано всего 1250 копий, и все расхватаны в одночасье. И в наше время этот труд не потерял своей актуальности.

Борьба ученых умов вокруг эволюции

Без сомнения, «Происхождение видов» стала наиболее важной книгой в истории био­логии. Множество ветвей науки вдруг стали вновь актуальными и исполненными значения с точки зрения эволюции путем естественного отбора. Концепция сделала рациональными все собранные данные по таксономии, эмбри­ологии, сравнительной анатомии, палеонтоло­гии. Биология в целом стала не просто собранием фактов; она стала организованной наукой, базирующейся на широкой и очень полезной теории.

Однако приняли труд и концепцию Дарви­на не все, и не все принявшие — сразу. Осо­бенно много обвинений посыпалось со сторо­ны почитателей буквы и слова Библии - было невозможно принять сразу, что мир и че­ловечество созданы не Богом. Даже среди людей нерелигиозных появилось немало про­тивников предположения, что все сущее — ре­зультат слепого и неодухотворенного случая.

Английский зоолог Ричард Оуэн (1804 — 1892), лидер оппозиции, был одновременно последователем Кювье в его науке восстанов­ления вымерших животных по ископаемым останкам. Он сопротивлялся не просто кон­цепции эволюции, но мысли, что избранные живут на планете по воле случая. Он считал, что должна быть какая-то внутренняя воля Природы.

Обычно Дарвин сам не отстаивал своих теорий. Однако английский биолог Томас Генри Гексли (1825— 1895) взял на себя роль его защитника. Гексли, кроме того, что был блестящим популяризатором науки, наводил ужас на противников своим талантом орато­ра. Он сам себя именовал «дарвиновским бульдогом».

Поначалу дарвинизм не был принят во Франции, однако Германия в целом восприня­ла идеи ученого. Немецкий натуралист Эрнст Генрих Геккель (1834-1919) был сторонни­ком Дарвина. Он увидел в развивающемся эм­брионе виртуальную сжатую модель эволю­ции. К примеру, млекопитающие начинают Жизнь в виде единственной клетки, как и про­стейшие, затем развиваются в двуслойные организмы, подобные медузе, затем уже — в трехслойные, как какой-нибудь примитивный червь. В ходе последующего развития эмбри­он млекопитающего вырабатывает, а затем те­ряет хорду, потом приобретает и теряет струк­туры, характерные для рыб. С этой точки зрения Геккель имел оппонента в лице эмбри­олога Байера, который пришел к тем же выво­дам, но не принял дарвинизма. Современные биологи также не принимают выводы и кон­цепцию Геккеля как единственно верную кар­тину хода эволюции.

Американский ботаник Аса Грей (1810 — 1888) стал наиболее активным защитником дарвинизма в Америке. Религиозный пропо­ведник, он не мог быть обвинен в атеизме, тем самым его аргументация приобретала до­полнительную силу. Его оппонентом в Аме­рике стал натуралист Жан-Луи Родольф Агассис. Агассис заслужил научную репута­цию изучением ископаемых рыб, но больше всего популярности ему принесла концепция прохождения в давно минувшие времена лед­ников в регионах, где никто из современни­ков их увидеть не мог. Агассис не принял дарвинизма в своем пиетете перед Природой.



Происхождение человека

Самый уязвимый момент в дарвинизме ка­сается человека. Сам Дарвин завуалировал этот момент в своем «Происхождении ви­дов», да и его соавтор, Уэллес, в конце кон­цов пришел к выводу, что человек не подвержен эволюционным процессам. Однако было бы нелогично предполагать, что эволюция коснулась всех видов, кроме человека.

В 1838 г. французский археолог Жак Бушеде Кревекер де Перте (1788-1868) от­крыл в северной Франции стоянку древнего человека. К тому времени стало возможно определить возраст каменных топоров, най­денных на стоянке, и человеческих останков. Таким образом, стало научно очевидно, что не только Земля, но и человек насчитывает в своей истории гораздо более тысяч лет, чем те б тысяч, о которых говорит Библия. Пуб­ликация этих данных вызвала фурор. Фран­цузские биологи, все еще находившиеся под влиянием уже умершего Кювье, отказались принимать эти изыскания. Английские уче­ные встали на сторону Буше де Перте.

А четыре года спустя геолог Лаэлл, ис­пользовав находки Буше де Перте, опубли­ковал книгу «Античная история человека», в которой не только поддерживал теорию дар­винизма, но и обосновывал ее применение к человеку. Гексли также написал книгу, взяв за основу эту позицию.

В 1871 г. Дарвин открыто выступил с тео­рией эволюции человека от млекопитающих, опубликовав вторую книгу — «Происхож­дение человека». В ней он рассматривал рудиментарные органы человека как доказа­тельства эволюционных изменений. (В человеческом теле имеется целый ряд рудиментар­ных органов. Аппендикс — это остаточный орган, некогда используемый для запасания пищи. Этому запасу пищи в те времена пред­назначалось проходить долгую бактериаль­ную обработку. В основании спины у челове­ка имеются четыре косточки, которые были когда-то частью хвоста; имеются также ныне совершенно бесполезные мускулы, предназна­чавшиеся для движения ушей, и т. д.)

В 1856 г. в Германии, в долине Неандерталь, был раскопан древний человек, вернее, обнаружен его череп. Этот череп, совершенно очевидно, принадлежал примитивному, обезь­яноподобному человеку. Обнаружен он был в слое, насчитывавшем много тысяч лет. И сра­зу же ученый мир потерялся в догадках: был ли то примитивный вид человека, который позже превратился в человека современного, либо обычный дикарь древности, возможно с обезображенным болезнью скелетом и генети­ческой деформацией черепа?

Выдающийся авторитет ученого мира тех лет, немецкий врач Рудольф Биршоу (1821 — 1902), поддержал последнюю версию. В про­тивоположность ему, французский хирург Пол Брока (1824 — 1880), наиболее авторитет­ный эксперт по структуре черепа того време­ни, заявил, что ни здоровый, ни одичавший, ни больной человек новой формации не может быть обладателем такого черепа.

Для того чтобы уладить все эти недоуме­ния, требовалась следующая находка: она была бы связующим и до поры недостающим звеном между человеком и человекоподобной обезьяной. Такие недостающие звенья были частыми в биологической науке. К примеру, в 1861 г. Британский музей приобрел иско­паемые останки существа, внешне напомина­ющего птицу, а также отпечатки перьев в камне. У этого существа, однако, были зубы и хвост, как у ящерицы. Это стало ярчайшим доказательством того, что птицы эволюцио­нировали от рептилий.

Однако поиски необходимого звена в происхождении человека не удавались на протяжении ряда десятилетий. Успех при­шел к голландскому палеонтологу Мари-Эжен-Франсуа-Томасу Дюбуа (1858—1940). Он был одержим идеей поиска недостающе­го звена и считал, что искать нужно либо в Африке, где по сей день обитают шимпанзе и гориллы, либо в Юго-Восточной Азии, где обитают гиббоны и орангутаны.

В 1889 г. Дюбуа был призван правитель­ством страны в экспедицию на остров Ява (тогда — голландская колония). В течение не­скольких лет он отыскал верхнюю часть чере­па, тазовую кость, а также два зуба того, что, вне сомнения, было когда-то примитивным че­ловеком. Череп был больше любого обезьянь­его, но меньше черепа современного человека. Зубы также занимали промежуточное положе­ние между зубами человекоподобной обезьяны и человека. Дюбуа, опубликовав в 1894 г. ре­зультаты своих исследований, назвал суще­ство, которому принадлежали останки, пите­кантроп прямоходячий.

Другие подобные находки были сделаны в Китае и Африке, так что отыскалось сра­зу несколько недостающих звеньев. Теперь аргументы как в пользу эволюции в целом, так и в пользу эволюции человека в частно­сти стили неоспоримы. Безусловные против­ники теории эволюции остались, пожалуй, только среди религиозных фундаменталис­тов. В наше время трудно вообразить авто­ритетного биолога, который являлся бы ан­тиэволюционистом.

«Боковые направления» эволюции

Если антиэволюционисты были все же не правы, то напрасно впадали в радостный энту­зиазм слишком горячие приверженцы тео­рии, которые отыскивали признаки эволюции даже в тех областях, куда она не проникала. Так, английский философ Герберт Спенсер (1820 — 1903), наработавший эволюционист­ские идеи еще до выхода книги Дарвина, ухва­тился за эту книгу и взял ее выкладки в дока­зательство своих рассуждений о человеческом обществе и культуре. Таким образом, он поло­жил начало науке социологии.

Спенсер утверждал, что все общество и культура в целом начинались на весьма при­митивном уровне, а затем эволюционировали до современного сложного состояния. Он по­пуляризировал термин «эволюция» (которым Дарвин предпочитал не пользоваться), а также фразу «выживание наиболее приспособ­ленных». Спенсеру представлялось, что все че­ловеческие индивидуумы находятся в постоян­ной борьбе за выживание и слабейшие погибают в ней. Спенсер счел их гибель неизбежным следствием эволюции и прогресса и выдвинул теорию, что следует «помочь» естественному от­севу среди безработных и прочих неблагополуч­ных представителей общества, а не устраивать для них биржи труда и приюты. Он провоз­гласил, что благотворительность, милосердие и социальная помощь вредят прогрессу.

Это, однако, мешало популяризации дар­виновской теории, поскольку Спенсер не учел того, что для осуществления эволюции нужен долгий исторический путь. Единственным же путем, который признавал Спенсер, было на­следственное принятие приобретенных харак­теристик (по Ламарку). Он игнорировал тот факт, что, многие члены человеческого обще­ства привязаны к своим больным и неблагопо­лучным собратьям и страстно не хотели бы их потерять. Кроме того, история цивилизации доказывает преимущество гуманного общества над обществом, построенным на взаимоотно­шениях «хищник —жертва».

И все-таки спенсерианство повлияло на историю и в годы, предшествующие Первой мировой войне, дало карты в руки национа­листам и милитаристам, ведь любая война оправдана, если она помогает выживанию наиболее приспособленных. К счастью, сей­час эти теории забыты.

Еще одну теорию развил английский ант­рополог Фрэнсис Гэлтон (1822 — 1911), дво­юродный брат Дарвина. Гэлтон в молодые годы посвящал себя метеорологии, но после выхода книги своего знаменитого кузена об­ратился -1с биологии. Он интересовался во­просами наследственности и первым обратил внимание на важность изучения идентичных (однояйцевых) близнецов. Именно у них на­столько одинаковы наследственные призна­ки, что разница может быть отнесена цели­ком к влиянию окружающей среды.

Изучая случаи рождения детей с много­обещающими задатками, Гэлтон должен был признать, что они наследуются. Он предчув­ствовал, что таланты и другие желаемые ха­рактеристики могут быть заложены при зачатии. В 1883 г. он выдвинул термин евге­ника (от греческого «хорошее рождение») для обозначения метода, который выработал.

К сожалению, чем больше собиралось ин­формации о механизме наследования, тем ме­нее уверены были биологи в успехе улучше­ния расы путем селективного скрещивания (так сказать, искусственно направленной эво­люции). Выяснялось, что это крайне сложная материя. В то время как евгеника остается одной из ветвей биологии наследственности, так называемые евгенисты, которые взяли на вооружение ненаучную, расистскую часть те­ории, время от времени размахивают знаме­нем превосходящей расы.



Глава 7 Основы генетики

Тупиковые вопросы дарвинизма



Причина ошибочного использования эво­люционной теории — природа механизма на­следования, который и до сих пор до конца не изучен и тем более не был понят в XIX в. Спенсер ожидал быстрых изменений в чело­веческом поведении, а Гэлтон воображал, что расу можно улучшить программой селек­тивного наследования из-за частичного био­логического невежества.

Непонимание природы механизма насле­дования было наиболее уязвимым местом дарвиновской теории. Дарвин предполагал, что существуют случайные вариации при­знаков у наследников любых видов живот­ных и что некоторые вариации, ввиду луч­шего приспособления к окружающей среде, в большей степени закрепятся у одних, чем у других. К примеру, юный жираф, родив­шийся с самой длинной шеей, лучше при­способлен к условиям и первый кандидат на выживание.

Но каким образом закрепится этот при­знак? Жираф с самой длинной шеей не обя­зательно найдет партнера со столь же длинной шеей; вполне возможно, что унаследуется короткая шея. Все эксперименты по скрещиванию животных укрепили уче­ных во мнении, что наследуемые признаки смешиваются в последующих поколениях; поэтому жираф с длинной шеей, скрещен­ный с жирафом с короткой шеей, даст по­коление с шеей средней длины.

Другими словами, все полезные и хорошо подходящие к условиям характеристики ус­редняются; они сведутся к невыдающемуся среднему уровню в результате случайного скрещивания; естественному отбору не оста­нется поля деятельности — соответственно, эволюционных изменений не произойдет.

Некоторые биологи приводили такие до­воды, но без особого успеха. Швейцарский ботаник Карл Вильгельм фон Нагели (1817 — 1891), поборник дарвинизма, предпо­ложил, что, для того чтобы эволюция пошла в каком-либо определенном направлении, должен произойти некий внутренний толчок.

Например, лошадь, как показали раскоп­ки, произошла от небольшого существа рос­том с собаку и с четырьмя пальцами на каждой конечности. Прошли века, и лошадь выросла в холке, окреп ее скелет, она один за другим теряла пальцы, пока не преврати­лась в непарнокопытное. Нагели предполо­жил, что какая-то сила толкала лошадь поэтому пути эволюции: она увеличивалась в размерах и шла к однопальцевой конечнос­ти, пока не стала бы слишком большой для выживания. Она уже не смогла бы прятать­ся от врагов и была обречена на вымирание. Эта теория получила название ортогенез, однако не была признана современными био­логами.

Горошек менделя

Решение проблемы связано с именем авст­рийского монаха и ботаника-любителя Грегора Иоганна Менделя (1822 — 1884). Мендель увлекался как математикой, так и биологией; соединив оба своих увлечения, он в течение восьми лет, начиная с 1857 г., скрещивал де­коративный горошек разных цветов.

Он искусственно опылял растения таким образом, чтобы в случае наследования харак­теристик они наследовались бы только от од­ного родителя. Он собирал и хранил семена, произведенные от самоопыленного сорта, за­тем высевал их отдельно и изучал распреде­ление характеристик в новом поколении.

Он обнаружил, что, если посеять семена от карликового сорта, вырастали только кар­ликовые растения. Семена, произошедшие от этого второго поколения, также давали толь­ко карликовые растения. Карликовые расте­ния горошка являлись в1 данном случае пря­мыми потомками.

Семена от высокорослых растений не все­гда вели себя аналогичным образом. Некото­рые высокорослые растения (составлявшие около трети произраставших в его саду) по­казали себя прямыми потомками, дающими одно за другим высокорослые поколения. Остальные давали разброс характеристик. Некоторые семена от этих высокорослых ра­стений давали высокие растения, а другие — карликовые. Всегда разброс был таковым, что высокорослых было вдвое больше, чем карликовых. Очевидно, что существовало два вида высокорослых растений: прямые потомки и непрямые потомки.

Мендель приближался к истине шаг за шагом. Он скрестил карликовые растения с высокорослыми растениями (истинными по­томками) и обнаружил, что каждый получен­ный в результате гибрид давал высокорослое растение. Итак, признак карликовости исчез.

Затем Мендель добился самоопыления каждого гибридного растения и изучил полу­ченные семена. Все гибридные растения оказа­лись непрямыми потомками. Около одной четверти семян, полученных от них, дали кар­ликовые растения, одна четверть — «прямые» высокие растения, а оставшаяся часть (поло­вина) дала «непрямые» высокие растения.

Мендель объяснил этот разброс тем, что каждое растение несет в своем генотипе два фактора, влияющих на рост как генный при­знак. Мужская часть генотипа несет один фак­тор, женская часть — второй. При скрещивании два фактора объединялись и новое поко­ление давало пару (по одному от каждого ро­дителя, если они получены от скрещивания этих двух родителей).

Схема распределения признаков наследственности в высоких и карликовых растениях:

1 - результат скрещивания истинных высоких растений с карликовыми, дающий гибриды либо неистинные высо­кие растения;

2 -- распределение признаков между истинными высоки­ми, карликовыми, гибридно-высокими потомками в про­порции 1:1:2.

В - высокие; к - карликовые; Вк - гибридно-высокие

Карликовые растения несут только признак карликовости, и, комби­нируя этот признак путем само- или искусст­венного опыления, можно получить только карликовые растения. «Прямые» (истинные) высокие растения несут только признак высокорослости, и комбинация дает только высо­кие растения.

Если «истинное высокое» растение скре­щивать с карликовым растением, «высокий» фактор комбинируется с признаком карли­ковости, и следующее поколение станет гиб­ридным. Все растения в этом поколении будут высокими, поскольку признак высоко­го роста — доминирующий, подавляющий карликовость. Однако фактор карликовости не исчезает.

Если такие гибриды либо перекрестноопыляемы, либо самоопыляемы, они неистинные потомки, поскольку несут в генотипе оба фак­тора, которые могут комбинироваться в широ­ком разнообразии способов (что диктуется только случаем). «Высокий» фактор может комбинироваться с другим «высоким» факто­ром, производя истинно высокорослое расте­ние. Это и происходит в одной четверти случаев. «Карликовый» признак может скомбинироваться с другим таким же, и получит­ся карликовое растение. Это также случается в одной четверти случаев. В оставшейся части комбинаций «высокий» признак комбинирует­ся с «карликовым» либо «карликовый» — с «высоким», производя неистинные (непря­мые) высокорослые растения.

Мендель пошел дальше, чтобы показать, что аналогичное распределение признаков характерно и для других показателей, а не только роста. Он доказал, что каждый экст­ремум характеристик удерживал в дальней­шем свою идентичность. Если в каком-либо поколении этот признак исчезал, то появлял­ся в последующем поколении.

Это был ключик к теории эволюции (хотя Мендель никогда и не думал о приложении своих выводов к этой теории), поскольку сделанные им выводы означали, что случай­ные вариации видов в течение времени не ус­реднялись, а то появлялись, то исчезали как наследственные признаки, пока естественный отбор не давал полное их использование.

Ответ на вопрос, отчего же эти признаки казались усредненными в последующих поко­лениях, был таков: при случайном скрещива­нии наследуемые характеристики на самом деле были комбинацией генных характерис­тик. Разные компоненты их могут наследо­ваться независимо, и, пока каждый признак наследуется в манере «да» или «нет», об­щий результат некоторых «да» и некоторых «нет» — эффект усредненности.

Выводы Менделя также повлияли на ев­генику. Выходило, что «вытравить» нежела­тельные характеристики не так уж просто: они не проявятся в одном последующем по­колении, однако проявятся в другом. Искус­ственный отбор — дело более тонкое и более длительное, чем предполагал Гэлтон.

Гендель педантично описал результаты своих опытов, но, понимая свое положение малоизвестного ботаника-любителя, счел бо­лее мудрым заручиться поддержкой авторитетного ученого. Поэтому в 1860 г. он отослал свои результаты на суд Нагели. Тот отнесся к творчеству Менделя весьма холодно. Ему по­казалось малоинтересным подсчитывать рас­щепление признаков у какого-то горошка: го­раздо более его влек мрачный мистицизм вселенских теорий вроде ортогенеза.

Мендель был разочарован. В 1866 г. он опубликовал свои заключения, однако без поддержки маститых ученых он остался неза­меченным. А между тем Мендель был осно­воположником науки, которую мы сейчас име­нуем генетикой, или изучением механизма наследования, но ни ему, ни кому-либо иному это еще не было известно в те времена.



Мутации

Во второй половине XIX в. перед ученым миром встала и еще одна проблема: в резуль­тате последних достижений физики длинная история Земли оказалась гораздо короче той, что представлялась. Закон сохранения энер­гии требовал разрешить вопрос: откуда приходит энергия Солнца? Тогда еще ничего не было известно ни о ядерной энергии, ни о радиоактивности. Можно было бы предполо­жить, что эволюция шла скачками, посколь­ку в свете открытий физики оказалось, что для постепенной «дарвинистской» эволюции попросту не хватает времени.

Голландский ботаник Хуго де Ври (1848—1935) был одним из сторонников эволюции скачков. К своей теории мутаций он пришел позже Менделя, но тем же пу­тем, наблюдая за растущими в собственном саду растениями. Он обнаружил, что инди­видуальные характеристики передаются из поколения в поколение без смешения и усреднения, причем в каждом поколении по­является новая разновидность растений од­ного и того же вида, отчетливо отличающа­яся от прочих, и она также закрепляется наследственно. Де Ври назвал эти внезап­ные изменения мутациями (по-латыни — «изменения»).