Настройки шрифта

| |

Фон

| | | |

 

Владимир Левшин

Путевые заметки рассеянного магистра

Эмилии Борисовне Александровой — доброму и взыскательному другу, участнику всех моих начинаний — посвящаю эту трилогию.






Первая весточка

Вещий Олег! Он действительно не ошибся. Прошло около двух месяцев, не более, и Клуб Рассеянного Магистра в полном составе снова двинулся по следам приключений и ошибок неутомимого путешественника.

Первая весточка пришла как раз к началу учебного года. Это была поздравительная радиограмма с весьма широковещательным обращением:

«Всем, всем, всем! Учителям и учительницам! Школьникам и школьницам! Поздравляю вас с началом минувшего учебного года. Пусть он будет таким же успешным и весёлым, как год наступивший.

Сейчас мы с Единичкой очень далеко от вас — не менее чем в тридцати тысячах километров. Здесь круглый год лето. Мы сидим под пальмой, то и дело протягивая руку, чтобы сорвать с дерева банан или кокосовый орех. Единичка сожалеет, что не попадёт в свою школу к началу учебного года. Но… нет худа без добра. Ведь с Единичкой занимаюсь я сам!

Она очень прилежная ученица, и я не скуплюсь на хорошие отметки. Пятёрок у неё вдвое больше, чем четвёрок, четвёрок на две больше, чем троек. А вот троек у Единички в пять раз меньше, чем двоек. Да-да, троек в пять раз меньше, чем двоек! Правда, двоек у неё нет совсем. Надеюсь, теперь вы разберётесь сами, какие отметки у Единички.

Способная девочка! И всё-таки ей далеко до меня. О, я был исключительно талантливый ребёнок! Вот, например, учительница спросит: что больше — корень квадратный из двух или корень кубический из трех? И я тотчас же соображу, что корень квадратный из двух больше, чем кубический из трех.

А ещё помню, в младшем классе мы проходили переместительный закон, где говорится, что от перемены мест слагаемых сумма не меняется. Я тогда подумал: нельзя ли использовать этот закон не только при сложении чисел, а более широко? У меня вообще, как вы знаете, философский склад ума. И я пришёл к выводу, что можно! Вот, например, есть такое правило: когда тебе задали задачу, сперва подумай, а потом решай. Признаться, правило это мне порядком надоело, и я решил применить к нему переместительный закон: стал сперва решать, а потом уж думать! Правда, ответы от этого несколько менялись, зато отметки оставались те же.

Заметьте, при этом я никогда не пользовался ни подсказками, ни шпаргалками. И вот почему. Однажды сосед мой по парте перед письменной работой заготовил шпаргалку, сунул её в рукав и как ни в чём не бывало уселся на место. Только он собрался ею воспользоваться, учительница хвать! — и вытащила шпаргалку из рукава. Бедняга сосед испугался, стал просить прощения: «Никогда, говорит, больше не буду пользоваться шпаргалками!» А учительница отвечает: «Отчего же? Пользуйся на здоровье. Только умеючи! А то ведь и осрамиться недолго!» Но, представьте себе, сколько мы потом в классе ни практиковались, сколько ни изощрялись, чтобы незаметно было, учительница все равно каждый раз находила шпаргалку. «Эх, вы, — качала она головой, — шпаргалку спрятать толком не умеете!» Тогда-то я понял, что учительницу не проведёшь. Тут нужно быть профессиональным фокусником. Ну, а уж раз ты стал фокусником, так какой тебе смысл идти в школу? Ступай прямо в цирк!

К сожалению, мне приходится закругляться. На телеграфе сказали, что в моей радиограмме 1000 слов, а это очень много и надо сократить её наполовину. А я сказал, что согласен сократить только на одну четверть. Там — ни в какую. В общем, столковались на середине. Так что, сколько слов в моей радиограмме, вы и сами сообразите.

А пока до свидания, вернее, до следующего сообщения, которое не замедлю отправить при первой же возможности. Я ведь дал слово посылать подробные отчёты о своих приключениях, а слово Магистра чего-нибудь да стоит! Спросите об этом у Единички, которая вместе со мной шлёт вам самый горячий привет».

ДЕСЯТОЕ ЗАСЕДАНИЕ КРМ

возникло стихийно, тотчас же после чтения радиограммы, которое состоялось у меня на квартире первого сентября, в семь часов вечера. Почему так поздно? Об этом лучше бы спросить Нулика.

Бессменный президент КРМ стал теперь самой популярной личностью в Карликании. Без него не обходится ни одно сколько-нибудь интересное мероприятие, а интересных мероприятий в Арифметическом государстве — ого-го! — хватает. Сами знаете. Не удивительно, что Нулик находится в состоянии перманентного цейтнота, или, говоря на более понятном языке, непрерывно зашивается. По этому случаю ему даже подарили персональную мини-ракету. Не настолько, впрочем, мини, чтобы в ней не осталось места для Пончика.

Итак, первого сентября, ровно в девятнадцать ноль-ноль персональная мини-ракета «НП» приземлилась, точнее, прибалконилась на моём персональном мини-балконе. Путешественники вошли в комнату с последним ударом стенных часов — совершенно как граф Монте-Кристо (кто в данном случае Монте, кто Кристо, разбирайтесь сами), и после взаимных приветствий чтение началось. А так как оно продолжалось недолго, всего несколько минут, решено было не откладывать разбора в долгий ящик. Тем более, что, по мнению президента, ошибки Магистра с первых же слов прямо бросаются в глаза.

— Так-таки и бросаются! — Сева шутливо прикрыл глаза ладонью, защищая их от воображаемых ошибок.

— Нечего насмешничать! — вспылил президент. — Это я выражаюсь фигурально.

— Не лучше ли конкретно? — улыбнулся Олег.

— Ты хочешь сказать — конкректно, — важно поправил Нулик. — Пожалуйста, можно и конкректно. Вместо того чтобы поздравить всех с наступившим учебным годом, Магистр поздравляет с началом минувшего.

— Правильно! — подтвердила Таня. — А что тебе бросилось в глаза дальше?

— Дальше?

— Вот именно: дальше. Да не на потолке, а в радиограмме…

Президент смущённо потупился.

— Ладно уж! — сжалился Олег. — Дальше следовало бы сказать, что Магистр никак не мог находиться в 30 тысячах километров от нас. Ведь расстояние между самыми отдалёнными точками земного шара не более 20 тысяч километров. Даже если передвигаться по экватору. Президент завистливо вздохнул:

— До чего ты умный, Олег! Всегда скажешь что-нибудь новенькое.

Все так и покатились со смеху. Даже Пончик! Авторитет президента основательно покачнулся, но Нулик вовремя поддержал его задачкой о Единичкиных отметках. Он рассуждал так: пятёрок у Единички было вдвое больше, чем четвёрок; четвёрок на две больше, чем троек; троек же в пять раз больше, чем двоек, а вот двоек не было совсем. Стало быть, двоек было нуль, а троек в пять раз больше, то есть опять же нуль. Если четвёрок на две больше нуля, значит, их было две, а пятёрок вдвое больше, чем четвёрок, то есть четыре.

— Ловкач! — поддразнил Нулика Сева. — Всегда отыграешься на чем-нибудь полегче. Сказал бы лучше, что́ больше: корень кубический из трех или корень квадратный из двух?

— Конечно, корень кубический из трех! — выпалил Нулик не задумываясь.

— Допустим, — вмешался я. — Но почему?

— Хотя бы потому, что Магистр утверждает обратное.

Сева возмущённо фыркнул:

— Ну не ловкач ли?

Олег посмотрел на него укоризненно:

— Ну да, Нулик не знает. Я тоже не знаю. Может быть, знаешь ты?

— Чего нет, того нет!

В конце концов пришлось объяснять мне.

— Разумеется, корень кубический из трех больше, чем корень квадратный из двух, — сказал я. — Но, уж конечно, не потому, что Магистр утверждает обратное, а вот почему. Корень квадратный из двух — это все равно что корень шестой степени из восьми.

Как так? — спросите вы. Очень просто: умножим показатель корня (2) и показатель степени подкоренного числа (1) на одно и то же число (3), получим корень шестой степени из восьми, и выражение от этого нисколько не изменится. Следовательно, корень квадратный из двух равен корню шестой степени из восьми (восемь — это и есть два в кубе):

Точно так же поступим с корнем кубическим из трех, только умножим его показатели не на три, а на два. И вместо корня кубического из трех получим равное ему выражение — корень шестой степени из девяти, то есть из трех в квадрате.

А корень шестой степени из девяти, уж конечно, больше, чем корень шестой степени из восьми:

Сева смущённо потёр переносицу.

— Вот это доказательство! Я бы нипочём не додумался.

— Только ли до этого? — усмехнулась Таня. — Тебе небось и количества слов в радиограмме Магистра тоже не сосчитать!

— А вот и сосчитать! — загремел Сева.

— Докажи! — подначивала Таня.

— И докажу. Сначала в радиограмме была тысяча слов. Магистру предложили сократить её наполовину, а он согласился сократить на четверть. Столковались на середине. А среднее между половиной и четвертью — три восьмых.

— Это как? — строго спросил президент.

— Очень просто: половина плюс одна четверть — это три четверти, а три четверти, делённые на два, равны трём восьмым. Три восьмых от тысячи — это 375. Вот и выходит, что в радиограмме осталось 625 слов. Потому что 1000 минус 375 равно 625.

— Недурно! — снисходительно сказала Таня. — Четвёрку я бы тебе поставила.

— Кстати, это единственное, что ты вычислила на сегодняшнем заседании! — театрально раскланялся Сева.

На том и закончилась наша первая встреча. А вскоре мы получили и с интересом прочитали следующее сообщение.

ПУТЕВЫЕ ЗАМЕТКИ РАССЕЯННОГО МАГИСТРА

Быстроходная улитка

Великолепное зрелище — восход солнца. Особенно в океане. Огромный красный шар вылезает прямо из воды. Спать в это время — преступление! Мы с Единичкой сидим в удобных шезлонгах на верхней палубе гигантского лайнера «Быстроходная улитка» и отдыхаем после недавних волнений; Каких — сейчас узнаете.

Дело было так. Чёрной египетской ночью в сплошном тумане лайнер проходил Гибралтарский пролив. Все пассажиры, кроме, конечно, меня, спали. Вдруг… слышу команду:

«Стоп!», а за ней вторую: «Полный назад!» Судно затрясло, все предметы в каюте сорвались со своих мест, а меня подбросило к потолку.

Когда я очнулся, то первым делом выглянул в иллюминатор: черно! Не видать ни зги! Подумайте только, даже мощный прожектор Александрийского маяка, одного из семи чудес древнего мира, и тот оказался бессильным. Свет его не пробивает густой темноты.

Я так перепугался, что быстро оделся, умылся, позавтракал и выбежал на палубу. Судно к этому времени уже шло своим курсом. Пассажиры продолжали спать, вахтенные стояли на своих постах, и я так толком и не добился, что же всё-таки произошло. И только старший помощник младшего радиста сжалился надо мной и разъяснил, в чём дело.

Оказывается, когда мы дошли до середины узкого Гибралтарского пролива, прямо из воды выросли и преградили нам дорогу два огромнейших столба, не менее двадцати метров в поперечнике каждый. Столбы стояли так близко друг к другу, что протиснуться между ними наше судно не могло.

Видя мой испуг, старший помощник младшего радиста улыбнулся и успокоил меня.

Не прошло и пяти минут, как столбы стали вдруг раздвигаться, и вскоре наша «Улитка» легко проскользнула между ними.

Да, все это позади. А сейчас — ясное небо и спокойный океан. Жара стоит невероятная. Да это и понятно: мы на самом юге Африки, а сейчас июль, разгар лета.

Нам с Единичкой захотелось выпить чего-нибудь прохладительного, и мы отправились в буфет-автомат. Но не тут-то было! В этом буфете действовали какие-то странные правила. Вдоль стены сверкал эмалью и никелем ряд автоматов со всевозможными напитками. Опусти жетон — и пей на здоровье. В этом, конечно, нет ничего странного. Ничего странного не было и в том, что для каждого автомата полагался жетон, помеченный его номером. Странными были сами номера, написанные на автоматах.

У первого автомата номер был, разумеется, 1. Зато у следующего — номер 4, затем 13, потом следовал номер 40, потом — 121… Что за чушь! Это уж не порядок, а беспорядок номеров!

Единичка перепробовала напитки из автоматов под номерами 1, 4, 13, 40 и 121. Но ни один из них ей не понравился. Ей захотелось наполнить стакан из того автомата, который стоял сразу за номером 121. Но, к сожалению, номер над щелью этого автомата стёрся. (Наверное, от частого употребления — там был действительно вкусный напиток.)

Я предложил Единичке выбрать какой-нибудь другой автомат.

— Зачем другой? — удивилась Единичка. — Тут же всё ясно. Неужели вы не догадались, какой номер должен стоять после 121-го?

Я стал гадать: 1, 4, 13, 40, 121… Что же дальше? Пока я раздумывал, Единичка уже опустошила свой стакан и тут же взяла ещё один жетон для меня, но опустила его в щель, так и не показав мне. Вот озорница!

Слегка обидевшись, я повёл Единичку в каюту. Кстати, нам с ней предстояла срочная работа. Дело в том, что капитан лайнера решил подарить всем пассажирам значки в память о приятном плавании. Но при этом каждый должен был сам нарисовать эскиз значка, который ему бы хотелось получить.

Нетрудно догадаться, что я предложил сделать значок математический и непременно оригинальный. Единичка со мной согласилась и тотчас все придумала.

— Вычертим сперва круг, — сказала она, — он будет изображать нашу планету, по которой мы путешествуем. А около этого круга опишем четырехугольник — это будут четыре части света, которые нам предстоит посетить: Европа, Африка, Австралия и Азия.

Идея была превосходная, но я её несколько уточнил, добавив, что четырехугольник должен быть неправильный, ведь части света тоже не одинаковы. На том и порешили.

Единичка тотчас принялась вычерчивать круг, но я посоветовал сперва начертить какой-нибудь произвольный четырехугольник, а уж потом вписывать в него круг. Единичка запротестовала — она хочет сперва круг, а потом четырехугольник. Вот чудачка! Ну какая разница — описать четырехугольник около круга или вписать четырехугольник в круг? Ведь можно и так и эдак.

Ну, я всё-таки спорить не стал и, когда Единичка нарисовала круг, попросил описать около него четырехугольник со сторонами пять, шесть, девять и, наконец, десять сантиметров. 5, 6, 9 и 10 — великолепный четырехугольник! Единичка согласилась со мной, но почему-то поменяла стороны местами: 5, 6, 10 и 9. Все-то ей надо делать по-своему! Но значок у неё, в общем, получился премилый.

Я хотел было и для себя придумать какой-нибудь необыкновенный значок, но тут неожиданно раздался пушечный выстрел. Неужели, подумал я, мы плывём на военном корабле? К счастью, стреляли с берега и к тому же холостыми зарядами. Мы приближались к какому-то острову, и темнолицые туземцы приветствовали нас. Тысячи лодок окружили нашу «Улитку», загородив ей дорогу. Капитану волей-неволей пришлось бросить якорь. Пока судно покачивалось на рейде, подали трап. Вместе со всеми пассажирами мы сошли на берег, где попали в гости к одному очень приятному человеку и чудесно провели у него время.

На прощание хозяин решил подарить нам циновку собственного изготовления. Это был очень искусный плетельщик. За долгую жизнь он изготовил тысячи циновок и предложил нам выбрать любую, по нашему вкусу.

Единичке понравилась циновка, где изображена дикая лошадь, названная именем знаменитого путешественника… этого… как его?.. Да, вспомнил — лошадь Семёнова-Тян-Шанского. Великолепная лошадь, ничего не скажешь! Однако мне все же захотелось взять какую-нибудь математическую циновку. И я выбрал ту, где по зелёному полю вычерчены красные круги, а около каждого круга описана равнобочная трапеция. Вот будет замечательный значок! Как раз то, что я хотел! Представляете себе — круг, а около него описана равнобочная трапеция!

Хозяин с радостью предложил мне своё творение, но при этом смущённо добавил, что может подарить циновку только тому, кто правильно ответит на вопрос: какова длина средней линии этой описанной трапеции? Подумаешь, какая сложность!

Я вынул свой складной метр… но владелец циновки вежливо остановил меня, сказав, что пользоваться измерительными инструментами не разрешается. Для того чтобы узнать, какова длина средней линии этой трапеции, достаточно знать длину её боковой стороны, а она равна 25 сантиметрам. Я попросил разрешения подумать над трудной задачей, но Единичка, как всегда, опередила меня и выпалила первое попавшееся число.

— Милая девочка, циновка ваша! — сказал хозяин с поклоном.

Уверен, что с его стороны это была простая вежливость.

Да, но какое число назвала моя ветреная Единичка? Что-то не помню.

Хозяин подвёл меня к куче скатанных в трубки циновок. — Выбирайте любую, — сказал он. — К каждой циновке прикреплён ярлык, на котором написаны её размеры. Я знал, что площадь нашей каюты равна десяти квадратным метрам, и поэтому выбрал циновку с пометкой: «10 к. метров».

Вернувшись на судно, я тотчас отправился в каюту, чтобы обновить подарок… Но что это? Циновка в каюте не умещалась! Сперва я подумал, что по ошибке захватил не ту циновку… Нет! На ярлыке стояло все то же: «10 к. метров». Я заново измерил каюту — 10 квадратных метров! Тогда я решил проверить площадь циновки, и, можете себе представить, она оказалась равной 31, 4 квадратного метра. Вот так так! Наш хозяин, видимо, здорово просчитался.

Я бросился на палубу. Судно уже отчаливало, но я всё же успел крикнуть стоявшему на берегу плетельщику, что он, мол, ошибся и подарил мне циновку в три с лишним раза большую. Тот что-то отвечал, только я не все расслышал.

— Все верно! — кричал он. — У нас… измеряют… не в квадратных… а в круговых… За единицу площади принят… Тут мощный гудок «Быстроходной улитки» окончательно заглушил его голос, оставив меня в полном недоумении. Когда-нибудь на досуге придётся мне основательно подумать над этой соломенной загадкой.

ОДИННАДЦАТОЕ ЗАСЕДАНИЕ КРМ

прошло буквально на ходу. Не подумайте только, что второпях, а просто во время прогулки по осенним московским бульварам. Под ногами уютно шуршали опавшие листья, вызывая у одних склонность к сосредоточенному раздумью, у других — непреодолимое желание нестись сломя голову невесть куда и кататься по земле в припадке телячьего восторга. Впрочем, восторг следовало бы назвать собачьим, поскольку в данном случае речь идёт о Пончике: все знают, что бегать сломя голову и кататься по траве — его узкая специальность.

Не в пример своему четвероногому другу, Нулик, как и полагается президенту, вёл себя с завидной выдержкой. Он первый открыл прения, заметив, что лайнер, на котором путешествовал Магистр и Единичка, вряд ли следовало называть «Быстроходной улиткой». Все сошлись на том, что замечание, в общем, дельное: улитки и в самом деле быстроходными не бывают.

— Не мешает все же вспомнить, — осторожно вставил я, — что автомобиль Адама Козлевича, описанный Ильфом и Петровым в «Золотом телёнке», назывался «Антилопа-Гну», а он особой быстроходностью тоже как будто не отличался…

— Вы хотите сказать, что названия не всегда следует принимать всерьёз? — спросил озадаченный президент.

— Вот именно, — подтвердил Сева. — Так же, как сообщения Магистра. Вот хотя бы то, что чёрной египетской ночью лайнер проходил Гибралтарский пролив. Как говорится, в огороде бузина, а в Киеве дядька. Ведь западная граница Египта проходит на 25 градусе восточной долготы, а Гибралтарский пролив находится на шестом градусе западной, по существу — в другом полушарии. Поэтому мощный Александрийский маяк уж никак не мог освещать Гибралтар, даже если бы…

— Даже если бы этот маяк все ещё существовал, — закончила Таня. — Но он давным-давно разрушен. Ещё одна нелепость Магистра.

— И не последняя, — сказал Олег, теребя поднятый прутик. — Прежде всего, у младшего радиста не бывает старшего помощника. А если на этот раз и был, то шутник. Он, вероятно, хотел разыграть Магистра и рассказал ему о каких-то гигантских столбах, якобы преградивших путь «Быстроходной улитке» в Гибралтарском проливе.

— Выдумщик! — не то с восхищением, не то с укором сказал Нулик.

— Да нет, радист ничего не выдумывал. Это за него сделали древние греки. Есть у них такой миф о герое Гера́кле (или Геркуле́се). Так вот, этот Геркулес во время своих странствий достиг края земли и воздвиг там по обе стороны узкого морского пролива два каменных столпа. Так будто бы возникли скалы на берегах Гибралтарского пролива.

— Между прочим, — вставил я, — отсюда и пошло иносказательное выражение «дойти до геркулесовых столпов», то есть до предела. И выражение это как нельзя больше подходит нашему Магистру: уж он ли не достиг предела в путанице! Вот почему он так легко поверил шутнику, который не только подсунул ему как свежее происшествие древнюю легенду о геркулесовых столпах, но и перемешал её с другой легендой — о Сци́лле и Хари́бде.

— Стойте! — хлопнул себя по лбу Сева. — Так я же об этом читал! Сцилла и Харибда — два чудовища, которые жили на противоположных берегах Мессинского пролива. Они подстерегали и уничтожали моряков. И спастись от них было невозможно. Те, кому удавалось избежать острых зубов Сциллы, обязательно попадали в пасть Харибды. Вот отчего говорят, что человек, мечущийся между двумя непреодолимыми опасностями, находится между Сциллой и Харибдой. Только я бы лучше сказал — между молотом и наковальней. Так мне больше нравится.

— А один человек всё-таки прошёл между Сциллой и Харибдой, — заметил Олег.

— Вот храбрец! — изумился президент.

— Ещё бы! Прославленный герой Троянской войны, хитроумный Одиссей…

— Не забудь все же, — напомнил я Олегу, — что Одиссей прошёл между Сциллой и Харибдой, но не раздвигал геркулесовых столпов…

— А Пончик раздвинул бы, — неожиданно расхвастался президент. — Вон он как шныряет между кустами.

— Ой, не могу! — прыснула Таня. — Пончик — герой Древней Эллады!

— А героев, между прочим, увенчивали лаврами, — не без умысла ввернул Сева.

— Ура! — крикнул президент. — Лавровый венок Пончику!

Вряд ли хоть один герой отбрыкивался от лаврового венка, да ещё так яростно, как Пончик. Уже не оттого ли, что вместо лавров ему подсунули пожелтевшие кленовые листья? Так или иначе, неожиданные почести воздействовали на пса явно неблагоприятно. Зато Нулику внеплановое развлечение пошло на пользу: вволю подурачившись, он возобновил прения, сказав, что страшная африканская жара, о которой писал Магистр, скорее всего ему приснилась, потому что июль в Африке — зима, и там в это время довольно прохладно…

— Попадание точное, — констатировал Сева. — Леди и джентльмены, в честь новой победы президента предлагаю поднять бокалы с фруктовым соком!

— Принято единогласно, — быстро сказал президент. — Вот и палатка недалеко…

— Фи, сэр! — Сева с притворным ужасом закатил глаза. — Какая палатка?! Уж если пить сок, так из тех автоматов, о которых сказано у Магистра.

Нулик надулся:

— Воображаемые автоматы… Воображаемый сок…

— Будет и настоящий. Дай только разобраться, каким номером был помечен автомат, стоявший после автомата под номером 121. Единичка — та сразу догадалась…

Сева искоса посмотрел на Таню.

— Всё дело в закономерности, — отозвалась она. — Номера автоматов — 1, 4, 13, 40 и 121. Надо выяснить, по какому закону возрастают эти числа. Попробуем вычислить разность между ними: 4–1=3, 13-4=9, 40–13=27 и 121-40=81. Здесь сразу бросается в глаза, что первая разность 3 всё время повторяется в последующих числах, но уже возведённая в степень. Сначала это 3 в квадрате (9), потом 3 в кубе (27), потом 3 в четвёртой степени (81). И вот уже перед нами довольно стройная картина: единицу можно рассматривать как 3 в нулевой степени; 4 — как единицу плюс три в первой степени. Прибавим к четырём три, взятое во второй степени (то есть 9), получим 13; затем прибавим к 13 три, взятое в третьей степени (то есть 27), получим 40…

— А затем, — перебил Нулик (ему не терпелось показать, что он всё понял), — прибавим к 40 три в четвёртой степени, то есть 81, и получим 121. Значит, для следующего числа надо к 121 прибавить 3, взятое в пятой степени, то есть 243. 121+243=364. Вот какой номер стоял на очередном автомате.

— Молодчина! — Таня погладила президента по взъерошенному затылку. — Может, скажешь, как решить эту задачу по-другому?

— А разве можно?

— Представь себе, можно. Чтобы получить любое число этого ряда, надо предыдущее умножить на три и прибавить единицу. Умножь 121 на три и прибавь единицу — получишь 364.

— Что ж, — подытожил я, — Таня разобралась в этом вопросе ничуть не хуже Единички. А посему двинулись дальше.

— Куда? — деловито осведомился президент. — Обратно, к Тимирязеву, или вперёд, к Пушкину?

— Небольшое, брат, расхождение. Ты о памятниках, а я о памятном значке. О том, который собирались сделать Магистр и Единичка. На нём должен быть круг с описанным четырехугольником. Не помнишь?

— Склероз! — понимающе кивнул Сева.

— А вот и помню, — огрызнулся президент. — Магистр ещё захотел сперва вычертить четырехугольник, а уж потом вписать в него круг.

— Это он напрасно, — сказал Олег. — Не во всякий четырехугольник можно вписать круг, зато четырехугольник можно описать около всякого круга. Единичка, кстати, так и сделала: сперва вычертила круг. Магистр предложил описать около этого круга четырехугольник со сторонами 5, 6, 9 и 10. Но умница Единичка поменяла стороны местами и расположила их так: 5, 6, 10 и 9.

— А почему, собственно, умница?

— Да потому, что во всяком описанном около круга четырехугольнике суммы противоположных сторон должны быть равны между собой. 5+10=15 и 6+9 тоже равно пятнадцати.

Не сомневаюсь, что втайне президент, конечно, огорчился своим невежеством, но виду не подал.

— Это что! А я вот такое заметил… Магистр уверяет, что когда «Улитка» покачивалась на рейде, матросы подали трап, и пассажиры спустились прямо на берег. Ну не смехота ли?! Ведь судно-то стояло на рейде, значит, далеко от берега. Что ж, пассажиры так в воду и шлёпались?

— Скорее всего, они переправлялись на берег в шлюпках, — предположила Таня. — А вот на берегу… на берегу Магистр и Единичка попали в гости к плетельщику циновок. Единичке очень понравилась циновка с изображением лошади, и Магистр сказал, что это лошадь Семёнова-Тян-Шанского. Конечно же, он имел в виду совсем другого путешественника — Пржевальского, который обнаружил в Центральной Азии дикую лошадь неведомой породы. Её-то и назвали лошадью Пржевальского.

— Так и быть, простим Магистру эту оплошность, — примирительно сказал Сева. — В конце концов, он всё-таки математик, а не естественник. Но то, что этот математик не смог вычислить длину средней линии равнобедренной трапеции, описанной около круга, это уж стыдно! Ему ведь была известна длина боковой стороны трапеции: 25 сантиметров. Как же он позабыл, что средняя линия такой трапеции как раз и равна её боковой стороне?

— Это почему?

— Да потому, что суммы противоположных сторон описанной трапеции равны между собой. А средняя линия равна полусумме её оснований, то есть длине одной из боковых сторон.

— Хорошее объяснение, — сказал я.

— Очень хорошее, — согласился Нулик. — В особенности потому, что последнее.

— А ты небось соскучился по фруктовому соку? — поддразнил Олег. — Придётся тебе потерпеть, пока мы не разберёмся в последнем — действительно последнем вопросе.

— А, это о циновках! — вспомнил Нулик.

— Да, о циновках. Магистр выбрал циновку в 10 к. метров. Понятно: ведь он занимал каюту в 10 квадратных метров. Но циновка в каюте почему-то не уместилась. Площадь её оказалась в 3,14 раза больше. Магистр очень удивился. А дело было в том, что плетельщик за единицу площади принял не квадрат со стороной, равной единице, а круг с единичным радиусом. Стало быть, в циновке было не 10 квадратных, а 10 круговых метров.

Президент скорчил недоверчивую мину:

— Да разве такое возможно?

— Отчего же? Всё дело в условности. Условно за единицу площади принят квадрат. Но вместо квадрата мог быть и прямоугольник, и треугольник, а значит, и круг — в зависимости от того, что в каждом отдельном случае удобней. Вот, например, на плоскости удобней измерять расстояние прямыми линиями. А на сфере приходится измерять кривыми — меридианами, параллелями…

— Но какую же циновку надо было выбрать Магистру для каюты в 10 квадратных метров? — не унимался Нулик.

— Площадью примерно в 3,18 кругового метра.

— Зачем мне результат? Расскажи лучше, как ты его вычислил!

— Сам разберёшься, — строго сказал Олег.

Но президент и не думал ни в чём разбираться: он уже шагал к павильону «Воды — соки»…

ПУТЕВЫЕ ЗАМЕТКИ РАССЕЯННОГО МАГИСТРА

В дебрях Африки

Наша «Улитка» неслась на всех парусах. Мы уже обогнули самый южный выступ Африканского материка — мыс Доброй Надежды, вышли в Индийский океан, затем вошли в какой-то пролив и чуть не врезались В скалистый берег Европы. Я этому даже обрадовался — так приятно снова увидеть родную землю! Но капитан огорчил меня, сказав, что задерживаться здесь не намерен: просто он сбился с пути и собирается немедленно повернуть к Африканскому континенту.

Не прошло и двух часов, как «Улитка» вошла в устье реки Замбе́зи и стала продвигаться к северу. Мы жадно любовались живописными тропическими берегами этой судоходной реки.

Через три дня и три ночи мы приплыли в Конго. А так как река здесь кончилась и «Улитка» дальше плыть не могла, нам с Единичкой ничего не оставалось, как продолжать путешествие пешком.

Я был совсем не прочь побродить по недоступным пампасам и повторить маршрут знаменитого путешественника Ли́вингстона. Ведь именно сюда он и направился на поиски своего заблудившегося коллеги Стэ́нли.

Но прогулки в тропическом лесу, знаете ли, чреваты опасностями. Нас чуть не съели тигры. К счастью, я вовремя разжёг костёр, и хищники со злобным рычанием скрылись в дебрях.

Едва мы оправились от страха, как раздались душераздирающие вопли. Я сразу догадался, что то был воинственный клич какого-то дикого племени. И не ошибся.

Только мы успели, уцепившись за лиану, взобраться на дерево, как под. нами появилась огромная толпа дикарей. Одни размахивали копьями, другие потрясали бумерангами.

Несмотря на неудобное положение, я всё же успел сосчитать, сколько воинов окружало нас. Математика прежде всего! Оказалось, что копьеносцев было больше, чем бумерангистов. При этом больше ВО столько раз, НА сколько тех же копьеносцев было больше, чем бумерангистов.

Удивительное совпадение! И ВО сколько раз, и НА сколько — одно и то же число! А число было такое огромное (к сожалению, от страха я забыл его начисто!), что пришлось нам с Единичкой сдаваться в плен. Нас связали и повели к вождю.

Выяснилось, что дикари принадлежат к какому-то неведомому мне племени буль-буль. К удивлению моему, оказалось, что они очень любят математику, особенно алгебру. Кто бы мог подумать! Но алгебра у них какая-то необычная, я бы сказал — дикая, в общем, бульбулевая алгебра. Впрочем, многие правила такие же, как и у нас. Но иногда… иногда хоть за голову хватайся!

Вы не поверите, но эти алгебраисты не могут сложить два одинаковых выражения. Все мы знаем, что А+А=2А. У них же А плюс А так и остаётся А. И смех и грех!

Я им вежливо говорю, что они грешат против обычной логики, а они отвечают, что именно логика и подсказывает им, что А+А=А. Я стал спорить. Но разве их переспоришь! Ведь я один, а их множество. Ну скажите на милость, где это научные споры решаются большинством голосов? Только у дикарей!

Бульбульки страшно на меня обиделись, а вождь их так разгневался, что приказал нам немедленно убираться из плена. Пришлось подчиниться силе и уйти.

Освободившись от нашего присутствия, дикари возликовали и запустили нам вслед свои бумеранги. Те пролетели высоко над нашими головами и шлёпнулись наземь метров за сто впереди.

Вскоре мы подошли к грандиозному водопаду. Потоки воды широкими каскадами низвергались с невероятной высоты, а сверкающие на солнце брызги разлетались далеко вокруг.

К вершине водопада вела узкая лестница, вырубленная в скале. Все её ступеньки были украшены изображениями различных животных. Рисунки эти были выложены из множества разноцветных камешков.

Хранитель водопада с гордостью пояснил, что рисунки тут особые. На первой ступеньке уложено 100 разноцветных камешков, на второй — 101 камешек, на третьей — 102… В общем, на каждой следующей ступеньке было на один камешек больше, чем на предыдущей. А на самую верхнюю ступеньку ушло ровно 500 камешков.

Единичке захотелось хорошенько рассмотреть все рисунки, и она потянула меня на лестницу. Но хранитель сказал, что гораздо приятнее рассматривать рисунки, спускаясь вниз, а наверх лучше подняться по канатной дороге.

Единичка немедленно уселась в вагончик, но хранитель разъяснил, что вагончик имеет право везти только тех, кто сумеет сосчитать, сколько камешков уложено на всех ступеньках лестницы.

— К чему считать? — удивился я. — Достаточно воспользоваться простым правилом, изобретённым великим математиком Га́уссом. Если известно, что на первой ступеньке 100 камешков, а на последней — 500, надо сложить 100 и 500 (получится 600), разделить эту сумму пополам (получится 300) и, наконец, 300 умножить на число всех ступенек, то есть на 400 (ведь 500 минус 100 — это 400). 300, умноженное на 400, равно ста двадцати тысячам. Вот сколько камешков ушло на все рисунки.

Я уселся рядом с Единичкой в вагончик, но… хранитель водопада, вместо того чтобы везти нас наверх, преспокойно расположился на нижней ступеньке лестницы и углубился в чтение африканской газеты. Очевидно, он просто не был знаком с правилом Гаусса. Хорошо, что Единичка (ох эта Единичка!) сумела-таки уговорить его. Что она ему нашептала, понятия не имею, но вскоре мы уже были наверху.

Вид оттуда изумительный, но там так холодно, что я чуть не замёрз. А термометр на вагончике как ни в чём не бывало показывал 28 градусов выше нуля! Ясно, что градусник был испорчен, хотя хранитель начисто это отрицал. Разумеется, из чувства противоречия.

Мы быстро спустились вниз, бегло осмотрели рисунки и, чтобы согреться, бодрым шагом отправились дальше.

Вскоре мы встретили очень интересного человека. Он оказался энтомологом — охотником на диких зверей. Сейчас он уже закончил свою экспедицию и готовился отправить добычу в зоопарк.

Хищники были спрятаны в трех заколоченных ящиках с маленькими дырочками для воздуха. В одном ящике были муравьеды, в другом утконосы, а в самом большом — жирафы.

Я, понятно, спросил у охотника, велик ли улов. Но тот, узнав, что я известный математик, очень обрадовался и сказал, что предоставляет мне возможность вычислить самому, сколько животных находится в каждом ящике. При этом он пояснил, что утконосов у него во столько раз больше, чем муравьедов, во сколько муравьедов больше, чем жирафов. А жирафов в семь раз меньше, чем всех животных, вместе взятых. Я возразил: такую задачу решить абсолютно невозможно.

— Совершенно с вами согласен, — сказал охотник, — я пошутил.

Но в это время с самого высокого ящика свалилась крышка, и оттуда выглянуло десять прелестных жирафьих морд.

— Ну, теперь-то уж вы наверняка решите мою задачу! — воскликнул охотник. И снова, по-моему, пошутил.

— Пусть число жирафов 10, — недоумевал я, — но ведь остаётся неизвестным, во сколько раз жирафов меньше, чем муравьедов!

— Во столько же раз, — ответил энтомолог, — во сколько муравьедов меньше, чем утконосов.

— К тому же, — добавила Единичка, — не забудьте, что всех животных в семь раз больше, чем жирафов!

— Ну и что из этого? — спросил я.

Но Единичка (до чего проворна!) мигом решила задачу. Я так за неё обрадовался, что тут же позабыл, сколько утконосов и муравьедов поймал наш охотник.

Отдохнув, мы двинулись дальше и к вечеру подошли к неповторимому по красоте озеру Чад.

Очертанием оно напоминает прямоугольник со сторонами примерно в 120 и 240 километров. (Я прикинул это по карте.) Огромный прямоугольник! Параметр его, выходит, равен 700 километрам.

Да такое озеро и за месяц не обойдёшь!

Быстро темнело. И вдруг откуда-то с востока небо прорезал тонкий луч света. Он был так тонок, что я его сразу и не разглядел. Единичка уверяла, что это пролетел метеорит. Но я-то думаю, что то был искусственный луч, пущенный из какой-нибудь местной лаборатории. Уверен, что это луч квазара. Единичка над этим смеётся. Чудачка! Что она знает о квазарных лучах? Ну вот, стало так темно, что я вынужден прервать свои записи. До свидания! Вернее, до следующего письма.

ДВЕНАДЦАТОЕ ЗАСЕДАНИЕ КРМ

происходило у Олега, в комнате, сплошь уставленной книгами. Нулик сказал, что никогда не видел столько книг зараз, и долго читал вслух по корешкам названия. Наконец его угомонили, и хозяин дома объявил заседание открытым.

— Итак, — сказал он, — Магистр уже обогнул южный выступ Африки. Поспешим и мы за его «Быстроходной улиткой». Кто просит слова?

Нулик уже давно сидел с поднятой рукой, а теперь поднял и другую — очень ему хотелось высказаться первым. На то была причина: в математических задачах президент не разобрался, зато считал себя великим географом. А как раз с географии начинался рассказ Магистра.

— Когда Магистр обогнул самый южный выступ Африки — мыс Доброй Надежды, — начал Нулик, — он очутился в Индийском океане, а затем в каком-то неизвестном проливе. И тут — ох и насмешил же! — чуть не наткнулся на Европу! Ну какая может быть Европа в Индийском океане? Это первое, а второе…

— Постой-постой, — перебила его Таня, — у тебя уже действительно есть и первая и вторая грубые ошибки. Прежде всего мыс Доброй Надежды не самая южная точка Африки. Есть и поюжнее — мыс Игольный. А потом, ничего удивительного, что в Мозамби́кском (а не в каком-то!) проливе «Улитка» наткнулась на Европу. В этом проливе в самом деле находится Европа, только не континент, а остров.

Президент виновато засопел, но смущение его, как всегда, быстро испарилось.

— Что делать, небольшая осечка, — небрежно сказал он. — Зато уж дальше я несомненно прав: «Улитка», конечно, могла войти в устье реки Замбези, но уж доплыть до самого её истока, до Конго, такое большое судно не сможет. Ведь Замбези вблизи устья судоходна не более, чем на протяжении 450 километров! А дальше — стоп! Начинаются пороги. Это я наверное знаю: вчера прочитал в энциклопедии. Теперь двинулись дальше. Интересно, что за пампасы отыскал Магистр в Африке? Ведь пампасы — травянистые степи, и встретить их можно только в Южной Америке. Значит, Ливингстон не мог разыскивать Стэнли в этих самых пампасах. Это уж точно.

— Не совсем, — возразил Сева. — Ливингстон не потому не мог искать Стэнли в пампасах, что в Африке пампасов нет, а потому (да простит меня достопочтенный президент!)… потому, что Стэнли вовсе и не пропадал. Затерялся в дебрях Африки сам Ливингстон. А вот разыскивал его да и нашёл наконец действительно Стэнли.

— Ну, от перемены мест слагаемых… — отмахнулся Нулик.

Удивительно, как быстро усвоил он любимую поговорку Магистра!

— И потом, — продолжал Сева, — напрасно Магистр испугался тигров.

— Ну нет, я бы тоже испугался! — честно признался президент.

— И я, — неожиданно согласился Сева, — если бы только в Африке водились тигры. Но в том-то и штука, что там их нет. Так же, как и пампасов. Так что подсчитай лучше, сколько воинственных дикарей окружили нашего рассеянного математика и его спутницу Единичку.

— Огромное число! — безапелляционно заявил Нулик.

— Именно так утверждает и Магистр, — насмешливо сказала Таня, — но ведь он сам дал ключ к точному решению этой задачи и тем сам себя опроверг. По его словам, копьеносцев было ВО столько же раз больше, чем бумерангистов, НА сколько первых было больше, чем вторых. Значит, и ВО сколько и НА сколько — одно и то же число. А это возможно только в одном случае: если копьеносцев было два, а бумерангистов — четыре. Ведь четыре больше двух и В два раза и НА два.

Нулик недоверчиво покачал головой:

— Ну, это ещё надо доказать.

— И докажу. Пусть копьеносцев (к) больше, чем бумерангистов (б) в x раз. Тогда к=x*б. Но, как известно, к и НА x больше, чем б, то есть к=б+x. А две величины, порознь равные третьей, равны между собой. Выходит, что x*б=б+x. После обычных преобразований находим что x=б/(б-1). Теперь подумаем, какое целое число делится без остатка на ему предшествующее? Какое число ни возьми, оно на предшествующее без остатка не разделится. Вот хоть 20 на 19 или 25 на 24… Единственное число, которое здесь подходит, — это 2. Потому что двойка, делённая на единицу, так и. останется двойкой… Итак, бумерангистов было два, а копьеносцев в два раза больше, то есть четыре. А всего на Магистра напало колоссальное войско… из шести человек.

— Ну, если уж ты такая умная, — сказал Нулик, — скажи, что за племя буль-буль?

Увы! Ни Таня, ни кто другой ему не ответили. Как всегда в таких случаях, говорить пришлось мне.

— Скорее всего, — начал я, — Магистра и Единичку атаковали не дикари воинственного племени буль-буль, а мирные учёные, занимающиеся особой, необычной алгеброй, которая называется бу́левой.

— Ага, — торжествовал Нулик, — Магистр всё-таки прав: есть такая бульбулевая алгебра!

— Не булькай зря! Просто булева алгебра. По имени английского учёного, который её изобрёл. О, он сделал замечательное открытие! Но, как часто бывает, открытие это никого в те времена не заинтересовало, и оно вместе с его автором оставалось в неизвестности долгие-долгие годы. Да многим и сейчас ещё имя Джо́рджа Бу́ля ничего не говорит. Зато всем хорошо знакомо имя его дочери Этель.

— Этель Буль? Никогда не слышала про такую, — пожала плечами Таня.

— Потому что Буль — её девичья фамилия, а по мужу она Войнич.

— Автор «Овода»! — всплеснула руками Таня. — Самая моя любимая книга!

— Совершенно верно, — подтвердил я. — Знаменитый автор «Овода» — дочь малоизвестного Буля. Надо сказать, малоизвестному Булю везло на знаменитых родственников. Вот, например, дядя его жены, Джордж Эверест, талантливый учёный, именем которого названа самая высокая в мире горная вершина Эверест. Одна из пяти дочерей Буля — Алиса — была даровитым математиком, другая — Люси — первой женщиной — профессором химии. И только сам Джордж Будь оставался в тени.

— А что это за алгебру он изобрёл? — полюбопытствовал президент.

— Алгебру логики. Что такое логика, надеюсь, объяснять не нужно?

— Что за вопрос! — обиделся Нулик. — Я ведь всё-таки житель Арифметического государства. А там логика в почёте.

— Уж конечно, — согласился я. — Логика широко используется в математике. А вот Буль сделал обратное. Он использовал математику в логике.

— Каким образом?

— В своём сочинении «Исследование законов мысли» Буль записал логические рассуждения математическими формулами. Так возникла булева алгебра логики.

— Но кому она нужна? — недоумевал Сева. — Не понимаю.

— Не только ты — многие не понимали. Слишком уж умозрительна была эта булева алгебра, слишком далека от жизни. Она не имела никакого практического значения, вот её и не принимали всерьёз.

— Поделом! Не выдумывай бесполезной заумщины.

— Опять ты торопишься! Да, во времена Буля алгебра его действительно не нашла себе применения. Но прошло каких-нибудь сто лет, и сейчас, в наши дни, булева алгебра используется в самых различных областях науки и техники. А самое главное — старая, никому не нужная булева алгебра широко применяется в самой молодой и в самой замечательной науке нашего времени — кибернетике.

— Ну да?! — Президент даже подскочил. — Вот не ожидал! Стало быть, то, что бесполезно сегодня, может оказаться полезным завтра?

— Это мы уже видели на примере Зенона, — напомнил я. — Кстати, идея, положенная Булем в основу его алгебры, задолго до него приходила в голову и другим учёным. Ещё в конце XIII века её проповедовал некий отшельник Райму́нд Лу́ллий. Правда, это стоило ему жизни; разъярённая толпа забросала его камнями. Луллий, как и Буль, остался непонятым. Даже несколько веков спустя его продолжали высмеивать такие великие мыслители, как Рабле́ и Джо́натан Свифт: один — в сочинении «Гаргантюа́ и Пантагрюэ́ль», другой — в «Путешествии Гулливера». Один лишь Джорда́но Бру́но воздал должное сочинениям Луллия. Но и он, как мы знаем, окончил свою жизнь на костре инквизиции. Позже, в XVII веке, алгеброй логики занимался великий Ле́йбниц. Но и его рукопись пролежала в неизвестности более двухсот лет. Однако Луллий и Лейбниц — все это предшественники Буля.

— А были и последователи? — спросил Олег.

— Были и последователи. Во второй половине прошлого века немецкий математик Георг Ка́нтор тоже, подобно Булю, изобрёл свою алгебру, и она также подверглась жестокой критике.

— Сколько, оказывается, можно напридумывать алгебр! — засмеялся Нулик.

— Целое множество! — подхватила Таня.

— Вот именно! — обрадовался я. — Это ты к месту сказала. Ведь Кантор назвал свою теорию алгеброй множеств, в отличие от обычной алгебры чисел. Само название «алгебра чисел» говорит о том, что она занимается количественными вычислениями. А вот алгебру множеств интересует не количество, а качество предметов, свойства, их объединяющие.

— Но при чём тут множества? — понукал меня Нулик. — И вообще что это такое — множество?

— Множеством математики называют собрание предметов (или понятий), которые обладают одним и тем же свойством. Вот, например, сидящие в театре во время спектакля люди — это зрители. Зрители образуют множество.

— Значит, ученики в классе — тоже множество, — сообразила Таня.

— И драчуны в классе — тоже множество, — добавил Сева.

— Правильно, — подтвердил я. — Но при этом заметь, что множество драчунов входит в множество учеников класса. Обозначим множество учеников класса буквой А, а множество драчунов — буквой Б. А теперь сложим оба множества. Что мы при этом получим?

— Получим А+Б, — гордо сказал Нулик.

— Верно. Но ведь множество Б входит в множество А. Значит, множество учеников класса при этом сложении ничуть не увеличится. Стало быть, А+Б так и останется А.

— Ну и алгебра! — развёл руками президент. — Совсем не похожа на обыкновенную.

— Как сказать! — возразил я. — В общем, алгебра множеств пользуется теми же правилами, что и алгебра чисел, хотя это и не обычные действия с числами. Ведь если ты возьмёшь множество красных карандашей и обозначишь его А, а затем множество синих карандашей обозначишь Б, то множество всех карандашей, как и в обычной алгебре, будет равно А+Б. И только несколько — именно несколько! — правил у алгебры множеств отличны от обычных.

— Да, но при чём здесь Буль? — возмутилась Таня. — Ведь речь как будто идёт об алгебре Кантора.

— В том-то и дело, что алгебра логики Буля и алгебра множеств Кантора по сути совершенно одинаковы.

— Но, насколько я помню, бульбули утверждали, что А+А=А, — возразил Сева, — а у вашего Кантора А+Б=А. Я пожал плечами:

— Да разве это не одно и то же? Допустим, что в классе драчуны все поголовно. Тогда множество учеников А равно множеству драчунов Б. Иначе говоря, А=Б. Подставим одно вместо другого и увидим, что А+А=А.

— Так вот в чём дело! — обрадовался Нулик. — Теперь я понимаю…

Я развёл руками.

— Ну, раз ты понимаешь, значит, нам самое время вместе с Магистром покинуть племя бульбулей и двинуться дальше.

— Только бы нас не настигли пущенные вслед бумеранги, — пошутила Таня.

— Хорошо, что ты о них вспомнила! — встрепенулся Сева. — Как известно, бумеранги тем и замечательны, что когда их пускают в цель, они возвращаются обратно. Если, конечно, в цель не попали. Так что упасть впереди Магистра бумеранги никак не могли. Разве что они были бракованные… К тому же это оружие австралийское, и вряд ли его применяют в Африке.

Снова поднял руку президент. Я уж, признаться, подумал, что он займётся задачей о ступеньках с мозаикой, но Нулик просто потребовал перерыва: ему, видите ли, необходимо подкрепиться перед походом к водопаду. Обычная история! Как и следовало ожидать, президенту никто не возразил.

«Подкрепление», приготовленное Таней, уничтожалось шумно и весело, после чего Нулик торжественно объявил, что снова готов к научной работе и попросил разрешения высказаться.

— Хочу отметить, — сказал он, — что, поднявшись на гору по канатной дороге, Магистр и впрямь оказался на высоте. Ему надо было сосчитать число камешков, покрывавших ступеньки, то есть найти сумму членов арифметической прогрессии от ста до пятисот. Для этого он воспользовался правилом, изобретённым Гауссом. И напрасно хранитель водопада отказался везти Магистра наверх. Я кончил.

— А я начинаю, — подхватил Олег. — Да будет тебе известно, что вычислять сумму членов арифметической прогрессии умели задолго до Гаусса. Однако правило это в самом деле связано с именем этого замечательного немецкого математика. Говорят, когда Гаусс был ещё школьником, учитель предложил однажды ученикам сложить все целые числа от единицы до сорока. Не успел он продиктовать своё задание, как семилетний Гаусс объявил, что ответ готов. Учитель, конечно, ему не поверил и даже пригрозил наказать за неуместную шутку. Но как же он удивился, когда увидал, что решение и в самом деле совершенно верное! Мальчик заметил, что равно-отстоящие от концов прогрессии числа (1 и 40, 2 и 39, 3 и 38 и так далее) при сложении образуют одно и то же число: 41. А так как таких пар было 20, он умножил 20 на 41 и получил ответ: 820. Так маленький Гаусс своим умом дошёл до того, что было давно известно. Так что именем Гаусса Магистр назвал правило зря. Да и воспользовался он этим правилом неправильно. Верно сложил первое и последнее число, то есть 100 и 500, так же верно разделил сумму 600 на два и получил 300. Но вот дальше стал умножать 300 на число ступенек, которых было не 400, как он думал, а 401. Значит, и камешков на все рисунки ушло не 120 000, а 120 300.

— Допустим, — согласился президент, — но уж градусник действительно был испорчен. Тут Магистр прав. На вершине скалы мороз, а ртуть поднялась до 28 градусов выше нуля!

— Ай-ай-ай! — Таня укоризненно покачала головой. — А ещё президент. Неужели ты не догадался, что там висел термометр Фаренге́йта?

Нулик хихикнул. Его всегда смешат незнакомые иностранные фамилии.

— Какой такой Фаренгейт?

— Вот такой. Немецкий физик XVIII века. Он предложил термометр со шкалой, где точка таяния льда обозначена не нулём, как на градуснике Цельсия, а числом 32. А точка кипения воды — не 100, а 212 градусов. Эта шкала и до сих пор употребляется в Англии и Америке. И 28 градусов по Фаренгейту — это около двух градусов мороза по Цельсию. Не мудрено, что у Магистра озябли руки.

Нулик рассеянно гладил Пончика, который тоже заметно скучал и тихо поскуливал. Видимо, президента уже утомила чересчур интенсивная умственная деятельность, и он довольно вяло воспринял замечание Севы о том, что охотник, встреченный Магистром, никак не мог быть энтомологом, потому что охотился на зверей, а энтомолог — специалист по насекомым.

Между тем Сева заслуживал большего внимания: он прекрасно решил задачу о пойманных охотником зверях, приняв число жирафов за единицу, а число муравьедов за икс. И так как жирафов было больше, чем утконосов, во столько же раз, во сколько утконосов больше, чем муравьедов, то вышло, что утконосов было x2. Ну, а всего зверей в семь раз больше, чем жирафов. Следовательно, 1+x+x2=7. Отсюда x+x2=6.

Оставалось подумать, какое же число, сложенное со своим квадратом, может быть равно шести. Только двойка! 2+22=6. Тот же ответ можно получить, если решить по всем правилам квадратное уравнение x+x2-6=0.

Итак, Сева убедительно доказал, что жирафов было вдвое больше, чем муравьедов, а муравьедов вдвое больше, чем утконосов. А так как Магистр знал, что жирафов было 10, то ясно, что муравьедов охотник поймал 20, а утконосов — 40. А всего зверей оказалось 70. Но самое смешное, что, решив задачу. Сева тут же указал на её бессмысленность, потому что, оказывается, ни муравьеды, ни утконосы в Африке не водятся…

Разбором двух последних ошибок Магистра занялся Олег.

— Допускаю, — сказал он, — что Магистр мог по карте принять озеро Чад за прямоугольник и даже на глазок прикинуть, что стороны его равны 120 и 240 километрам. Но вот назвать сумму сторон прямоугольника не периметром, а параметром это уж ни в какие ворота не лезет! Ведь параметр-постоянная величина, которая может, впрочем, иметь в различных случаях разные значения. Вот, например, в полёте — космический корабль. Чем определяется его орбита? Его параметрами: наибольшим и наименьшим удалениями от Земли, наклоном орбиты, временем обращения вокруг Земли и так далее. Однако эти постоянные величины будут совсем иные при другом полёте. Хотя и в одном полёте космонавт может сам менять параметры своей орбиты.

— И, наконец, последнее, — продолжал Олег. — Магистр назвал луч ла́зера квазаром. Но ведь это же совершенно разные вещи!