Настройки шрифта

| |

Фон

| | | |

 

K читателям русского издания

Это лекции по общей физике, которые читал физик–теоретик. Они совсем не похожи ни на один известный курс. Это может показаться странным: основные принципы классической физики, да и не только классической, но и квантовой, давно установлены, курс общей физики читается во всем мире в тысячах учебных заведений уже много лет и ему пора превратиться в стандартную последовательность известных фактов и теорий, подобно, например, элементарной геометрии в школе. Однако даже математики считают, что их науке надо учить по–другому. А уж о физике и говорить нечего: она столь интенсивно развивается, что даже лучшие педагоги все время сталкиваются с большими трудностями, когда им надо рассказывать студентам о современной науке. Они жалуются, что им приходится ломать то, что принято называть старыми или привычными представлениями. Но откуда берутся привычные представления? Обычно они попадают в молодые головы в школе от таких же педагогов, которые потом будут говорить о недоступности идей современной науки. Поэтому прежде чем подойти к сути дела, приходится тратить много времени на то, чтобы убедить слушателей в ложности того, что было ранее внушено им как очевидная и непреложная истина. Было бы дико сначала рассказывать школьникам «для простоты», что Земля плоская, а потом, как открытие, сообщать о ее шарообразности. А так ли далек от этого абсурдного примера тот путь, по которому будущие специалисты входят в современный мир идей теории относительности и квантов? Осложняет дело также то обстоятельство, что большей частью лектор и слушатели – люди разных поколений, и лектору очень трудно уйти от соблазна вести слушателей той знакомой и надежной дорогой, по которой он сам в свое время дошел до желанных высот. Однако старая дорога не вечно остается лучшей. Физика развивается очень быстро, и, чтобы не отставать от нее, надо менять пути ее изучения. Все согласны с тем, что физика – одна из самых интересных наук. В то же время многие учебники физики никак не назовешь интересными. В таких учебниках изложено все, что следует по программе. Там обычно объясняется, какую пользу приносит физика и как важно ее изучать, но из них очень редко можно понять, почему заниматься физикой интересно. А ведь эта сторона вопроса тоже заслуживает внимания. Как же можно сделать скучный предмет и интересным и современным? Об этом прежде всего должны подумать те физики, которые сами работают с увлечением и умеют передать это увлечение другим. Пора экспериментов уже наступила. Цель их – найти наиболее эффективные способы обучения физике, которые позволили бы быстро передать новому поколению весь тот запас знаний, который накоплен наукой за всю ее историю. Поиски новых путей в преподавании также всегда были важной частью науки. Преподавание, следуя развитию науки, должно непрерывно менять свои формы, ломать традиции, искать новые методы. Здесь важную роль играет то обстоятельство, что в науке все время происходит удивительный процесс своеобразного упрощения, который позволяет просто и кратко изложить то, что когда–то потребовало много лет работы.

Чрезвычайно интересная попытка в этом направлении была предпринята в Калифорнийском Технологическом институте (США), который сокращенно называют КАЛТЕХ, где группа профессоров и преподавателей после многочисленных дискуссий разработала новую программу по общей физике, а один из участников этой группы, крупный американский физик Ричард Фейнман, прочел лекции.

Лекции Фейнмана отличаются тем, что они обращены к слушателю, живущему во второй половине XX века, который уже многое знает или слышал. Поэтому в лекциях не тратится время на объяснение «ученым языком» того, что и так известно. Зато в них увлекательно рассказывается, как человек изучает окружающую его природу, о достигнутых сегодня границах в познании мира, о том, какие проблемы наука решает сегодня и будет решать завтра.

Лекции читались в 1961–1962 и 1962–1963 учебных годах; они записывались на магнитофон, а потом (и это оказалось само по себе трудной задачей) «переводились» на «письменный английский» профессорами М. Сэндсом и Р. Лейтоном. В этом своеобразном «переводе» сохранены многие особенности живой речи лектора, ее живость, шутки, отступления. Однако это очень ценное качество лекций отнюдь не было главным и самодовлеющим. Не менее важным были созданные лектором оригинальные методы подачи материала, в которых отразилась яркая научная индивидуальность автора, его точка зрения на пути обучения студентов физике. Это, разумеется, не случайно. Известно, что и в своих научных работах Фейнман всегда находил новые методы, которые очень быстро становились общепринятыми. Работы Фейнмана по квантовой электродинамике, статистике принесли ему широкое признание, а его метод – так называемые «диаграммы Фейнмана» – используется сейчас практически во всех областях теоретической физики.

Что бы ни говорили об этих лекциях – восторгались стилем изложения или сокрушались по поводу ломки старых добрых традиций, – одно остается бесспорным: надо начинать педагогические опыты. Наверное, не все согласятся с манерой автора излагать те или иные вопросы, не все согласятся с оценкой целей и перспектив современной физики. Но это послужит стимулом к появлению новых книг, в которых получат отражение другие взгляды. Это и есть эксперимент.

Но вопрос состоит не только в том, что рассказывать. Не менее важен и другой вопрос–в каком порядке это надо делать. Расположение разделов внутри курса общей физики и последовательность изложения – вопрос всегда условный. Все части науки настолько связаны друг с другом, что часто трудно решить, что надо излагать сначала, а что потом.

Однако в большинстве вузовских программ и имеющихся учебников до сих пор сохраняются определенные традиции.

Отказ от привычной последовательности изложения – одна из отличительных особенностей фейнмановских лекций. В них рассказано не только о конкретных задачах, но и о месте, которое занимает физика в ряде других наук, о путях описания и изучения явлений природы. Вероятно, представители других наук – скажем, математики – не согласятся с тем местом, которое отводит этим наукам Фейнман. Для него, как физика, «своя» наука, конечно, выглядит самой главной. Но это обстоятельство не занимает много места в его изложении. Зато в его рассказе ярко отражаются те причины, которые побуждают физика вести тяжелую работу исследователя, а также те сомнения, которые у него возникают, когда он сталкивается с трудностями, кажущимися сейчас непреодолимыми.

Молодой естествоиспытатель должен не только понять, почему интересно заниматься наукой, но и почувствовать, какой дорогой ценой достаются победы и как порой бывают тяжелы дороги, к ним ведущие.

Надо также иметь в виду, что если сначала автор обходился без математического аппарата или использовал лишь тот, который изложен в лекциях, то от читателя, по мере продвижения его вперед, будет требоваться увеличение его математического багажа. Впрочем, опыт показывает, что математический анализ (по крайней мере его основы) выучивается сейчас легче, чем физика.

Лекции Фейнмана вышли в США в трех больших томах. Первый содержит в основном лекции по механике и теории теплоты, второй – электродинамику и физику сплошных сред, а третий – квантовую механику. Чтобы книга была доступна большему числу читателей и чтобы ею было удобнее пользоваться, русское издание будет выходить небольшими выпусками. Первые четыре из них соответствуют первому тому американского издания.

Кому будет полезна эта книга? Прежде всего – преподавателям, которые ее прочтут целиком: она заставит их задуматься об изменении сложившихся взглядов на то, как начинать обучать физике. Далее, её прочтут студенты. Они найдут в ней много нового в дополнение к тому, что они узнают на лекциях. Конечно, ее попытаются читать и школьники. Большинству из них будет трудно одолеть все, но и то, что они смогут прочесть и понять, поможет им войти в современную науку, путь в которую всегда бывает трудным, но никогда не бывает скучным. Тому, кто не верит, что может пройти его, не стоит браться за изучение этой книги! И, наконец, ее могут читать все остальные. Читать просто так, для удовольствия. Это тоже очень полезно. Фейнман в своем предисловии оценивает результаты своего опыта не очень высоко: слишком малая доля студентов, прослушавших его курс, усвоили все лекции. Но так и должно быть.

Первый опыт редко приносит полный успех. Новые идеи всегда находят вначале лишь немного сторонников и лишь постепенно становятся привычными.

Я. Смородинский

Январь 1965

ПРЕДИСЛОВИЕ Р. ФЕЙНМАНА



Это – лекции по физике, которые я читал в прошлом и позапрошлом годах в Калифорнийском Технологическом институте для студентов первого и второго курсов. Но это не дословная их запись. Их пригладили – местами очень сильно, а порой не очень. К тому же это лишь часть полного курса обучения. Дважды в неделю 180 слушателей собирались в большой аудитории и, прослушав лекцию, группами по 15–20 человек проводили еще семинары под руководством ассистентов. Вдобавок раз в неделю проводились и лабораторные работы.

Чего мы хотели добиться, читая эти лекции? Мы хотели утвердить интерес к физике у молодых ее энтузиастов, у вчерашних выпускников средней школы. Перед поступлением в институт они много наслышались о том, как интересна и как увлекательна современная физика – теория относительности, квантовая механика и т. д. Но если бы этот курс читался так, как он читался раньше, весь их энтузиазм за два года мало–помалу улетучился бы – чересчур уж редко при обычном обучении встречаются действительно величественные, новые, современные идеи. Студентов заставили бы изучать наклонную плоскость, электростатику и прочее в этом роде, и все их порывы были бы сведены на нет. И весь вопрос был в том, сможем ли мы так построить курс, чтобы у самых способных, самых горячих студентов сохранился и укрепился их энтузиазм.

Не сочтите эти лекции каким–то обзорным курсом. Нет, курс этот весьма серьезен. Читая его, я ориентировался на самых сообразительных, я хотел по возможности, чтобы даже самые сильные слушатели не были в состоянии до конца усвоить все, что есть в этих лекциях. Для этого я подкидывал им мысли о возможных применениях основных идей и понятий вне основной линии наступления. Для этой цели я старался поточнее формулировать все утверждения, указывать, где только можно, какие уравнения и идеи укладываются в физическую картину мира и как при дальнейшем углублении они могут измениться. Я понимал также, что таким студентам очень важно указать, что из изучаемого они (если, конечно, у них достанет соображения) могут сами вывести из уже известного, а что, наоборот, для них совершенно ново. Формулируя новые идеи, я пытался либо вывести их, если они могли быть выведены, либо объяснить, что это действительно новая идея, что на уже изученные понятия ее опереть никак нельзя и что поэтому нельзя ее считать доказуемой, а можно лишь включить со стороны.

Приступая к лекциям, я предполагал, что студенты все же кое–что вынесли из средней школы – разные там геометрические оптики, простенькие понятия из химии и тому подобное. Я не видел также смысла в том, чтобы устанавливать какой–то определенный порядок в лекциях, чтоб нельзя было упоминать о вещах, о которых подробно будет говориться только позже. Наоборот, я часто вкратце говорю о том, что студент по–настоящему изучит намного позднее, когда он будет лучше подготовлен. Например, понятие об индуктансе или об энергетических уровнях дается на первых порах очень приблизительное и только спустя много времени развивается как следует.

Рассчитывая курс на самого активного слушателя, я все же учел интересы и такого парня, которого все эти фейерверки мыслей и многосторонние приложения могут только встревожить и отпугнуть, от кого вообще нельзя ожидать, что он усвоит большую часть материала. Я хотел, чтобы для него в лекциях оказалось по крайней мере основное ядро, или костяк, того, что он может получить. Я надеюсь, что он не очень будет нервничать, если не поймет в лекции всего. Пусть не понимает всего, пусть ухватит только самую суть, самое бьющее в глаза. Конечно, и для этого он должен проявить некоторую сообразительность, должен захотеть понять, какие теоремы и представления являются самыми главными, а что он сможет понять только позже и пока оставляет в стороне.

Была у меня одна серьезная трудность, когда я читал эти лекции: не работала обратная связь – от студента к преподавателю; я не видел, насколько хорошо эти лекции доходят. Это очень серьезная помеха, и я поныне не знаю, хороши ли эти лекции. Это по существу эксперимент, и, если бы мне пришлось его проделать еще раз, я бы его поставил иначе, но я надеюсь, что мне не придется браться за это дело вторично! И все же мне кажется, что для первого курса, по крайней мере в отношении физики, все выглядит вполне прилично.

А вот второй частью курса я не очень доволен. В начале этой части, говоря об электричестве и магнетизме, я не смог придумать какого–либо особого, отличного от общепринятого способа изложения, не смог найти такого подхода к теме, который возбуждал бы к ней интерес. С электричеством и с магнетизмом, таким образом, не много мне удалось сделать. После этой темы в конце второго курса я сначала собирался прочесть несколько лекций о свойствах твердых тел, касаясь главным образом таких вещей, как нормальные колебания, решения уравнения диффузии, колебательные системы, ортогональные функции и т. д., т. е. изложить начала того, что обычно именуют «методами математической физики». Задним числом могу сознаться, что, если бы я решился читать этот курс вторично, я бы непременно вернулся к этому намерению. Но поскольку повторение этих лекций не планируется, а вместо этого мне сказали, что неплохо было бы дать введение в квантовую механику, то это вы и обнаружите в конце настоящего курса.

Совершенно ясно, что студентам, желающим хорошо разобраться в физике, можно было бы подождать с изучением квантовой механики и до третьего курса. Но, возражая, мне выдвинули довод, что многие студенты с моего курса изучают физику только в качестве основы для занятий другими науками. Обычный же способ изучения квантовой механики делает ее почти недоступной для большинства студентов, потому что у них нет возможности так долго изучать ее. А в то же время вся махина дифференциальных уравнений, весь такой подход к квантовой механике редко используется в ее применениях, в частности в таких более сложных применениях, как электроника и химия. Поэтому я попробовал описать принципы квантовой механики так, чтобы знания уравнений в частных производных вначале не требовалось. Даже физику, я думаю, будет интересно такое изложение квантовой механики (по причинам, которые станут ясны из самих лекций). И все же мне кажется, что эксперимент с квантовой механикой не очень удался главным образом из–за того, что мне не хватило времени и конец пришлось скомкать (мне бы нужно было еще 3–4 лекции, чтобы полней изложить такие вопросы, как энергетические полосы и пространственная зависимость амплитуд). Да и, кроме того, я никогда прежде не излагал материал таким способом и отсутствие обратной связи ощущал особенно остро. Теперь я думаю, что квантовую механику надо излагать все–таки позже. Не исключено, что у меня появится возможность еще раз прочесть этот курс. Тогда я сделаю это получше.

В этом курсе нет лекций, посвященных решению задач. Они решались на семинарах. Хотя на трех лекциях я решал задачи, но в курс они не вошли. После лекции о вращающихся системах была прочитана лекция об инерциальной навигации, но, к сожалению, при издании ее опустили. Пятую и шестую лекции прочитал Мэтью Сэндс (я уезжал тогда из города).

Возникает естественный вопрос, насколько этот эксперимент удался. Моя личная точка зрения, которую, впрочем, не разделяют работавшие со студентами преподаватели, довольно пессимистична. Мне не кажется, что я хорошо поступил со студентами. Когда я наблюдал, как большинство студентов решает задачки на экзаменах, я подумывал о крахе всей моей системы преподавания. Правда, мои друзья напомнили мне, что среди студентов оказался десяток–другой разобравшихся, как это ни странно, почти во всем, активно трудившихся над материалом и подолгу с увлечением мучившихся над трудными вопросами. Эти ребята, на мой взгляд, обладают сейчас первоклассной подготовкой по физике, и я попытаюсь после всего заполучить их к себе на работу. Впрочем, «обучение редко приносит плоды кому–либо, кроме тех, кто предрасположен к нему, но им оно почти не нужно» (Гиббоне).

Тем не менее я не хотел бы бросать ни одного студента на произвол судьбы, как это, видимо, бывало при чтении курса. Как все–таки помочь студентам? Может быть, надо больше поработать над составлением комплекса задач, которые могли бы пролить свет на идеи, развиваемые в лекциях? Задачи дадут хорошую возможность расширить лекционный материал и помогут сделать идеи лекций более осязаемыми и полными, лучше уложить их в голове.

Все же я думаю, что самое лучшее решение проблемы образования – это понять, что самым превосходным обучением является прямая, личная связь между учеником и хорошим учителем, когда ученик обсуждает идеи, размышляет о разных вещах и беседует о них. Невозможно многому научиться, просто отсиживая лекции или даже просто решая задачи. Но в наше время такое множество студентов должно быть обучено, что для идеалов приходится подыскивать эрзацы. Может быть, мои лекции помогут в этом. Может быть, в тех краях, где можно найти отдельного учителя для каждого ученика, эти лекции смогут вдохновить учителя и подбросить ему кое–какие идеи. Может быть, поразмыслив над ними, он только позабавится, а может, и разовьет их дальше.

Ричард Фейнман

Июнь 1963

Предисловие

В основу этой книги легли лекции по общей физике, которые профессор Р. Фейнман читал в 1961–1962 академическом году в Калифорнийском Технологическом институте. Это – первая половина двухгодичного вводного курса, обязательного для всех студентов КАЛТЕХа. В 1962–1963 академическом году был прочитан второй цикл лекций, чем завершилась основная часть рассчитанной на четыре года работы по перестройке вводного курса физики.

Необходимость такого коренного пересмотра курса вызывалась не только быстрым развитием физики за последние десятилетия, но и тем, что в последние годы первокурсники приходили в КАЛТЕХ с более глубокой математической подготовкой, чем раньше, – результат улучшения преподавания математики в средней школе. Мы хотели, используя преимущества более прочного математического фундамента, изложить побольше современного материала, что сделало бы курс более интересным, наводящим на размышления и лучше отражающим физику наших дней.

Чтобы иметь представление о том, что надо включить в курс и как это сделать, преподавателям физического факультета было предложено высказать свои идеи в виде краткой программы курса. Возникло несколько проектов перестройки, которые были обсуждены подробно и с пристрастием. Почти все сошлись в одном: перестройку курса нельзя начинать ни просто с переделки уже существующих учебников, ни даже с создания нового учебника; новый курс должен строиться на основе лекций, лекции должны читаться два или три раза в неделю. Создание соответствующих печатных руководств – это будет уже следующий шаг; эти же лекции определят и содержание будущих лабораторных работ. Вчерне были обрисованы общие контуры курса, но это был лишь предварительный набросок, многое в нем выглядело спорным и могло измениться по усмотрению того, кто взялся бы за чтение лекций.

Обсуждались и многочисленные варианты осуществления проекта. Первоначально предполагалось, что будет создана группа из N основных участников (лекторов), которые поровну распределят работу: каждый возьмет себе 1/N часть материала, прочтет лекции и подготовит их к печати. Однако отсутствие необходимого числа участников и трудность выработки среди них единой точки зрения, связанная с индивидуальными вкусами, взглядами и даже характером каждого, сделали этот план неосуществимым.

Счастливая идея о том, как все же можно создать, быть может, не просто новый курс, отличный от других, а, возможно, уникальный, пришла профессору Сэндсу. Он предложил, чтобы профессор Р. Фейнман подготовил и прочел лекции, которые будут записаны на магнитофонную ленту. После обработки и издания этих лекций получился бы новый учебник. Вот суть принятого в конце концов плана.

Сначала ожидалось, что необходимая редакторская работа сведется к подбору рисунков, расстановке запятых и исправлению грамматических ошибок; этим могли бы заняться между делом один–два студента старших курсов. К несчастью, эти надежды жили недолго. Оказалось, что даже простое приведение записей лекций к пригодному для чтения виду, даже без переработки и пересмотра материала лекций, требует много времени. Такая работа не под силу техническому редактору или студенту, она требует пристального внимания физика–профессионала, причем над каждой лекцией он должен потрудиться часов десять–двадцать.

Трудность редакторской работы, а также необходимость как можно скорее передать лекции в руки студентов сильно затруднили окончательную «доводку» материала, и мы были вынуждены ограничиться созданием предварительного, но годного для издания варианта лекций, который можно было использовать немедленно, хотя и нельзя считать окончательным. Крайняя нужда в большом количестве экземпляров лекций для наших студентов, а также интерес к лекциям студентов и преподавателей других институтов заставили нас издать лекции в их предварительном виде, не дожидаясь окончательной редакции, которой, может быть, никогда и не будет. Мы нисколько не заблуждаемся относительно полноты, связности и логической стройности материала; более того, уже в ближайшем будущем мы собираемся вновь модернизировать курс и думаем, что ни форма, ни содержание его не останутся долго без изменений.

Кроме лекций – наиболее важной части курса, – нужно было позаботиться о задачах, развивающих опыт и умение студентов, и о лабораторных работах, чтобы студенты могли «потрогать руками» изложенный в лекциях материал. Ни то, ни другое еще не достигло той законченности, которую имел материал лекций, хотя кое–что в этом направлении, конечно, сделано. Некоторые задачи были придуманы в ходе чтения лекций, они затем были улучшены, а число их увеличено при повторном чтении курса. Однако мы еще не уверены в том, что эти задачи достаточно разнообразны и углубляют содержание лекций настолько, чтобы студенты могли сами полностью понять, каким мощным аппаратом они владеют. Поэтому задачи будут опубликованы отдельно и в таком виде, который бы допускал их более или менее частую переделку.

Профессор Неер предложил включить в курс несколько новых опытов. Среди них опыты, основанные на использовании воздушных подшипников с чрезвычайно малым трением: новый линейный воздушный желоб, с помощью которого можно количественно изучить одномерное движение, соударения тел и гармоническое движение; а также поддерживаемый на воздушной подушке и движимый воздухом максвелловский волчок, с помощью которого можно изучить вращение с ускорением, прецессию и нутацию гироскопа. Разработка новых лабораторных опытов будет, по–видимому, продолжаться в течение значительного времени.

Этот пересмотр учебной программы возглавляли профессора Р. Лейтон, Г. Неер и М. Сэндс. Официально в этой работе принимали участие профессора Р. Фейнман, Г. Нойгебауер, Р. Саттон, Г. Стаблер, Ф. Стронг и Р. Фогт с кафедр физики, математики и астрономии, а также профессора Т. Кофи, М. Плес–сет и К. Уилтс с кафедры технических наук. Мы сердечно благодарим за ценную помощь всех тех, кто принимал участие в пересмотре курса. Особенно мы обязаны фонду Форда, без финансовой помощи которого эта работа никогда не была бы осуществлена.

Роберт Б. Лейтон

Июль 1963

* В русском издании содержание тома IIвойдет в выпуски 5–7. Том IIIбудет содержать квантовую механику. – Прим. ред.

Глава 1 АТОМЫ В ДВИЖЕНИИ

§ 1. Введение

Этот двухгодичный курс физики рассчитан на то, что вы, читатель, собираетесь стать физиком. Положим, это не так уж обязательно, но какой преподаватель не надеется на это! Если вы и впрямь хотите быть физиком, вам придется много поработать. Как–никак, а двести лет бурного развития самой мощной области знания что–нибудь да значат! Такое обилие материала, пожалуй, и не усвоишь за четыре года; вслед за этим нужно еще прослушать специальные курсы.

И все же весь результат колоссальной работы, проделанной за эти столетия, удается сконденсировать – свести в небольшое число законов, которые подытоживают все наши знания. Однако и законы эти тоже нелегко усвоить, и просто нечестно по отношению к вам было бы начинать изучение такого трудного предмета, не имея под рукой какой–нибудь схемы, какого–нибудь очерка взаимосвязи одних частей науки с другими. Первые три главы и представляют собой такой очерк. Мы познакомимся в этих главах с тем, как связана физика с остальными науками, как относятся эти остальные науки друг к другу, да и что такое сама наука. Это поможет нам «ощутить» предмет физики.

Вы спросите: почему бы сразу, на первой же странице, не привести основные законы, а после только показывать, как они работают в разных условиях? Ведь именно так поступают в геометрии: сформулируют аксиомы, а потом остается только делать выводы. (Неплохая мысль: изложить за 4 минуты то, что и в 4 года не уложишь.) Сделать это невозможно по двум причинам. Во–первых, нам известны не все основные законы; наоборот, чем больше мы узнаем, тем сильнее расширяются границы того, что мы должны познать! Во–вторых, точная формулировка законов физики связана со многими необычными идеями и понятиями, требующими для своего описания столь же необычной математики. Нужна немалая практика только для того, чтобы наловчиться понимать смысл слов. Так что ваше предложение не пройдет. Придется нам двигаться постепенно, шаг за шагом.

Каждый шаг в изучении природы – это всегда только приближение к истине, вернее, к тому, что мы считаем истиной. Все, что мы узнаем, – это какое–то приближение, ибо мы знаем, что не все еще законы мы знаем. Все изучается лишь для того, чтобы снова стать непонятным или, в лучшем случае, потребовать исправления.

Принцип науки, почти что ее определение, состоит в следующем: пробный камень всех наших знаний – это опыт. Опыт, эксперимент – это единственный судья научной «истины». А в чем же источник знаний? Откуда приходят те законы, которые мы проверяем? Да из того же опыта; он помогает нам выводить законы, в нем таятся намеки на них. А сверх того нужно еще воображение, чтобы за намеками увидеть что–то большое и главное, чтобы отгадать нежданную, простую и прекрасную картину, встающую за ними, и потом поставить опыт, который убедил бы нас в правильности догадки. Этот процесс воображения настолько труден, что происходит разделение труда: бывают физики–теоретики, они воображают, соображают и отгадывают новые законы, но опытов не ставят, и бывают физики–экспериментаторы, чье занятие – ставить опыты, воображать, соображать и отгадывать.

Мы сказали, что законы природы – это приближения; сперва открывают «неправильные» законы, а потом уж – «правильные». Но как опыт может быть «неверным»? Ну, во–первых, по самой простой причине: когда в ваших приборах что–то неладно, а вы этого не замечаете. Но такую ошибку легко уловить, надо лишь все проверять и проверять. Ну, а если не придираться к мелочам, могут ли все–таки результаты опыта быть ошибочными? Могут, из–за нехватки точности. Например, масса предмета кажется неизменной; вращающийся волчок весит столько же, сколько лежащий на месте. Вот вам и готов «закон»: масса постоянна и от скорости не зависит. Но этот «закон», как выясняется, неверен. Оказалось, что масса с увеличением скорости растет, но только для заметного роста нужны скорости, близкие к световой. Правильный закон таков: если скорость предмета меньше 100 км/сек, масса с точностью до одной миллионной постоянна. Вот примерно в такой приближенной форме этот закон верен. Можно подумать, что практически нет существенной разницы между старым законом и новым. И да, и нет. Для обычных скоростей можно забыть об оговорках и в хорошем приближении считать законом утверждение, что масса постоянна. Но на больших скоростях мы начнем ошибаться, и тем больше, чем скорость выше.

Но самое замечательное, что с общей точки зрения любой приближенный закон абсолютно ошибочен. Наш взгляд на мир потребует пересмотра даже тогда, когда масса изменится хоть на капельку. Это – характерное свойство общей картины мира, которая стоит за законами. Даже незначительный эффект иногда требует глубокого изменения наших воззрений.

Так что же нам нужно изучить сначала? Учить ли нам правильные, но необычные законы с их странными и трудными понятиями, например теорию относительности, четырехмерное пространство–время и т. д.? Или же начать с простого закона «постоянной массы»? Он хоть и приближенный, но зато обходится без трудных представлений. Первое, бесспорно, приятней, притягательней; первое очень соблазняет, но со второго начать легче, и потом ведь это первый шаг к углубленному пониманию правильной идеи. Этот вопрос встает все время, когда преподаешь физику. На разных этапах курса мы по–разному будем решать его, но на каждой стадии мы будем стараться изложить, что именно сейчас известно и с какой точностью, как это согласуется с остальным и что может измениться, когда мы узнаем об этом больше.

Давайте перейдем к нашей схеме, к очерку нашего понимания современной науки (в первую очередь физики, но также и прочих близких к ней наук), так что, когда позже нам придется вникать в разные вопросы, мы сможем видеть, что лежит в их основе, чем они интересны и как укладываются в общую структуру.

Итак, как же выглядит картина мира?

§ 2. Вещество состоит из атомов

Если бы в результате какой–то мировой катастрофы все накопленные научные знания оказались бы уничтоженными и к грядущим поколениям живых существ перешла бы только одна фраза, то какое утверждение, составленное из наименьшего количества слов, принесло бы наибольшую информацию? Я считаю, что это – атомная гипотеза (можете называть ее не гипотезой, а фактом, но это ничего не меняет): все тела состоят из атомов – маленьких телец, которые находятся в беспрерывном движении, притягиваются на небольшом расстоянии, но отталкиваются, если одно из них плотнее прижать к другому. В одной этой фразе, как вы убедитесь, содержится невероятное количество информации о мире, стоит лишь приложить к ней немного воображения и чуть соображения.

Чтобы показать силу идеи атома, представим себе капельку воды размером 0,5 см. Если мы будем пристально разглядывать ее, то ничего, кроме воды, спокойной, сплошной воды, мы не увидим. Даже под лучшим оптическим микроскопом при 2000–кратном увеличении, когда капля примет размеры большой комнаты, и то мы все еще увидим относительно спокойную воду, разве что по ней начнут шнырять какие–то «футбольные мячи». Это парамеция – очень интересная штука. На этом вы можете задержаться и заняться парамецией, ее ресничками, смотреть, как она сжимается и разжимается, и на дальнейшее увеличение махнуть рукой (если только вам не захочется рассмотреть ее изнутри). Парамециями занимается биология, а мы прошествуем мимо них и, чтобы еще лучше разглядеть воду, увеличим ее опять в 2000 раз. Теперь капля вырастет до 20 км, и мы увидим, как в ней что–то кишит; теперь она уже не такая спокойная и сплошная, теперь она напоминает толпу на стадионе в день футбольного состязания с высоты птичьего полета. Что же это кишит? Чтобы рассмотреть получше, увеличим еще в 250 раз. Нашему взору представится что–то похожее на фиг. 1.1.



Фиг. 1.1. Капля воды (увеличенная в миллиард раз).

Это капля воды, увеличенная в миллиард раз, но, конечно, картина эта условная. Прежде всего частицы изображены здесь упрощенно, с резкими краями – это первая неточность. Для простоты они расположены на плоскости, на самом же деле они блуждают во всех трех измерениях – это во–вторых. На рисунке видны «кляксы» (или кружочки) двух сортов – черные (кислород) и белые (водород); видно, что к каждому кислороду пристроились два водорода. (Такая группа из атома кислорода и двух атомов водорода называется молекулой.) Наконец, третье упрощение заключается в том, что настоящие частицы в природе беспрерывно дрожат и подпрыгивают, крутясь и вертясь одна вокруг другой. Вы должны представить себе на картинке не покой, а движение. На рисунке нельзя также показать, как частицы «липнут друг к другу», притягиваются, пристают одна к одной и т. д. Можно сказать, что целые их группы чем–то «склеены». Однако ни одно из телец не способно протиснуться сквозь другое. Если вы попробуете насильно прижать одно к другому, они оттолкнутся.

Радиус атомов примерно равен 1 или 2 на 10–8см. Величина 10–8см это ангстрем, так что радиус атома равен 1 или 2 ангстремам (А). А вот другой способ запомнить размер атома: если яблоко увеличить до размеров Земли, то атомы в яблоке сами станут размером с яблоко.

Представьте теперь себе эту каплю воды с ее частичками, которые приплясывают, играют в пятнашки и льнут одна к другой. Вода сохраняет свой объем и не распадается на части именно из–за взаимного притяжения молекул. Даже катясь по стеклу, капля не растекается, опять–таки из–за притяжения. И все вещества не улетучиваются по той же причине. Движение частиц в теле мы воспринимаем как теплоту; чем выше температура, тем сильнее движение. При нагреве воды толчея среди частиц усиливается, промежутки между ними растут, и наступает миг, когда притяжения между молекулами уже не хватает, чтобы удержать их вместе, вот тогда они и улетучиваются, удаляются друг от друга. Так получают водяной пар: при повышении температуры усиливается движение и частицы воспаряют.

На фиг. 1.2 показан пар.



Фиг. 1.2. Пар под микроскопом.

Рисунок этот плох в одном – при выбранном нами увеличении на комнату придется всего несколько молекул, поэтому сомнительно, чтобы целых 21/2 молекулы оказались на таком маленьком рисунке. На такой площадке скорее всего не окажется ни одной частицы. Но ведь надо что–то нарисовать, чтоб рисунок не был совсем пустым. Глядя на пар, легче увидеть характерные черты молекул воды. Для простоты на рисунке угол между атомами водорода взят 120°. На самом же деле он равен 105°3\', а промежуток между центрами атомов кислорода и водорода равен 0,957 ?. Как видите, мы довольно хорошо представляем себе эту молекулу.

Давайте рассмотрим некоторые свойства водяного пара или других газов. Разрозненные молекулы пара то и дело ударяются о стенки сосуда. Представьте себе комнату, в которой множество теннисных мячей (порядка сотни) беспорядочно и беспрерывно прыгают повсюду. Под градом ударов стенки расходятся (так что их надо придерживать). Эту неумолкаемую дробь ударов атомов наши грубые органы чувств (их–то чувствительность не возросла в миллиард раз) воспринимают как постоянный напор. Чтобы сдержать газ в его пределах, к нему нужно приложить давление. На фиг. 1.3 показан обычный сосуд с газом (без него не обходится ни один учебник) – цилиндр с поршнем.



Фиг. 1.3. Цилиндр с поршнем.

Молекулы для простоты изображены теннисными мячиками, или точечками, потому что форма их не имеет значения. Они движутся беспорядочно и непрерывно. Множество молекул беспрерывно колотит о поршень. Их непрекращаемые удары вытолкнут его из цилиндра, если не приложить к поршню некоторую силу – давление (сила, собственно, – это давление, умноженное на площадь). Ясно, что сила пропорциональна площади поршня, потому что если увеличить его площадь, сохранив то же количество молекул в каждом кубическом сантиметре, то и число ударов о поршень возрастет во столько же раз, во сколько расширилась площадь.

А если в сосуде число молекул удвоится (и соответственно возрастет их плотность), а скорости их (и соответственно температура) останутся прежними? Тогда довольно точно удвоится и число ударов, а так как каждый из них столь же «энергичен», как и раньше, то выйдет, что давление пропорционально плотности. Если принять во внимание истинный характер сил взаимодействия атомов, то следует ожидать и небольшого спада давления из–за увеличения притяжения между атомами и легкого роста давления из–за увеличения доли общего объема, занятого самими атомами. И все же в хорошем приближении, когда атомов сравнительно немного (т. е. при невысоких давлениях), давление пропорционально плотности.

Легко понять и нечто другое. Если повысить температуру газа (скорость атомов), не меняя его плотности, что произойдет с давлением? Двигаясь быстрей, атомы начнут бить по поршню сильней; к тому же удары посыплются чаще – и давление возрастет. Вы видите, до чего просты идеи атомной теории.

А теперь рассмотрим другое явление. Пускай поршень медленно двинулся вперед, заставляя атомы тесниться в меньшем объеме. Что бывает, когда атом ударяет по ползущему поршню? Ясно, что после удара его скорость повышается. Можете это проверить, играя в пинг–понг: после удара ракеткой шарик отлетает от ракетки быстрей, чем подлетал к ней. (Частный пример: неподвижный атом после удара поршня приобретает скорость.) Стало быть, атомы, отлетев от поршня, становятся «горячее», чем были до толчка. Поэтому все атомы в сосуде наберут скорость. Это означает, что при медленном сжатии газа его температура растет. Когда медленно сжимаешь газ, его температура повышается, а когда медленно расширяешь, температура падает.

Вернемся к нашей капельке воды и посмотрим, что с ней будет, когда температура понизится. Положим, что толчея среди молекул воды постепенно утихает. Меж ними, как мы знаем, существуют силы притяжения; притянувшимся друг к другу молекулам уже нелегко покачиваться и прыгать. На фиг. 1.4 показано, что бывает при низких температурах; мы видим уже нечто новое. Образовался лед. Конечно, картинка эта опять условна – у льда не два измерения, как здесь изображено, но в общих чертах она справедлива. Интересно, что в этом веществе у каждого атома есть свое место, и если каким–то образом мы расставим атомы на одном конце капли каждый на свое место, то за многие километры от него на другом конце (в нашем увеличенном масштабе) из–за жесткой структуры атомных связей тоже возникнет определенная правильная расстановка. Поэтому если потянуть за один конец ледяного кристалла, то за ним, противясь разрыву, потянется и другой– в отличие от воды, в которой эта правильная расстановка разрушена интенсивными движениями атомов. Разница между твердыми и жидкими телами состоит в том, что в твердых телах атомы расставлены в особом порядке, называемом кристаллической структурой, и даже в том случае, когда они находятся далеко друг от друга, ничего случайного в их размещении не наблюдается – положение атома на одном конце кристалла определяется положением атомов на другом конце, пусть между ними находятся хоть миллионы атомов. В жидкостях же атомы на дальних расстояниях сдвинуты как попало. На фиг. 1.4 расстановка молекул льда мною выдумана, и хотя кое–какие свойства льда здесь отражены, но в общем она неправильна. Верно схвачена, например, часть шестигранной симметрии кристаллов льда. Посмотрите: если повернуть картинку на 120°, получится то же самое расположение.

Таким образом, лед имеет симметрию, вследствие которой снежинки все шестигранны. Из фиг. 1.4 можно еще понять, отчего, растаяв, лед занимает меньший объем.



Фиг. 1.4. Молекулы льда.

Смотрите, как много «пустот» на рисунке; у настоящего льда их тоже много. Когда система разрушается, все эти пустоты заполняются молекулами. Большинство простых веществ, за исключением льда и гарта (типографского сплава), при плавлении расширяется, потому что в твердых кристаллах атомы упакованы плотнее, а после плавления им понадобится место, чтобы колебаться; сквозные же структуры, наподобие льда, разрушаясь, становятся компактнее.

Но хотя лед обладает «жесткой» кристаллической структурой, его температура может тоже меняться, в нем есть запас тепла. Этот запас можно менять по своему желанию. Что же это за тепло? Атомы льда все равно не находятся в покое. Они дрожат и колеблются. Даже когда существует определенный порядок в кристалле (структура), все атомы все же колеблются «на одном месте». С повышением температуры размах их колебаний все растет, пока они не стронутся с места. Это называется плавлением. Наоборот, с падением температуры колебания все замирают, пока при абсолютном нуле температуры они не станут наименьшими из возможных (хотя полной остановки не наступит).

Этого минимального количества движения не хватает, чтобы растопить тело. Но есть одно исключение – гелий. Гелий при охлаждении тоже уменьшает движение своих атомов до предела, но даже при абсолютном нуле в них оказывается достаточный запас движения, чтобы предохранить гелий от замерзания. Гелий не замерзает и при абсолютном нуле, если только не сжимать его под высоким давлением. Повышая давление, можно добиться затвердения гелия.

§ 3. Атомные процессы

Так с атомной точки зрения описываются твердые, жидкие и газообразные тела. Но атомная гипотеза описывает и процессы, и мы теперь рассмотрим некоторые процессы с атомных позиций. Первым делом речь пойдет о процессах, происходящих на поверхности воды. Что здесь происходит? Мы усложним себе задачу, приблизим ее к реальной действительности, предположив, что над поверхностью находится воздух. Взгляните на фиг. 1.5.



Фиг. 1.5. Молекулы воды, испаряющейся в воздух.

Мы по–прежнему видим молекулы, образующие толщу воды, но, кроме того, здесь изображена и ее поверхность, а над нею – различные молекулы: прежде всего молекулы воды в виде водяного пара, который всегда возникает над водной поверхностью (пар и вода находятся в равновесии, о чем мы вскоре будем говорить). Кроме того, над водой витают и другие молекулы – то скрепленные воедино два атома кислорода, образующие молекулу кислорода, то два атома азота, тоже слипшиеся в молекулу азота. Воздух почти весь состоит из азота, кислорода, водяного пара и меньших количеств углекислого газа, аргона и прочих примесей.

Итак, над поверхностью воды находится воздух – газ, содержащий некоторое количество водяного пара. Что происходит на этом рисунке? Молекулы воды все время движутся. Время от времени какая–нибудь из молекул близ поверхности получает толчок сильнее остальных и выскакивает вверх. На рисунке этого, конечно, не видно, потому что здесь все неподвижно. Но попробуйте просто представить себе, как одна из молекул только что испытала удар и взлетает вверх, а с другой случилось то же самое и т. д. Так, молекула за молекулой вода исчезает – она испаряется. Если закрыть сосуд, мы обнаружим среди молекул находящегося в нем воздуха множество молекул воды. То и дело некоторые из них снова попадают в воду и остаются там. То, что казалось нам мертвым и неинтересным (скажем, прикрытый чем–нибудь стакан воды, который, может быть, 20 лет простоял на своем месте), на самом деле таит в себе сложный и интересный, беспрерывно идущий динамический процесс. Для нашего грубого глаза в нем ничего не происходит, но стань мы в миллиард раз зорче, мы бы увидали, как все меняется: одни молекулы взлетают, другие оседают.

Почему же мы не видим этих изменении? Да потому, что сколько взлетает молекул, столько же и оседает! В общем–то там «ничего не происходит». Если раскрыть стакан и сдуть влажный воздух, на смену ему притечет уже сухой; число молекул, покидающих воду, останется прежним (оно ведь зависит только от движения в воде), а число возвращающихся молекул сильно уменьшится, потому что их уже над водой почти не будет. Число улетающих молекул превысит число оседающих, вода начнет испаряться. Поэтому, если вам нужно испарять воду, включайте вентилятор!

Но это еще не все. Давайте подумаем, какие молекулы вылетают из воды? Если уж молекула выскочила, то это значит, что она случайно вобрала в себя излишек энергии; он ей понадобился, чтобы разорвать путы притяжения соседей. Энергия вылетающих молекул превосходит среднюю энергию молекул в воде, поэтому энергия остающихся молекул ниже той, которая была до испарения. Движение их уменьшается. Вода от испарения постепенно остывает. Конечно, когда молекула пара опять оказывается у поверхности воды, она испытывает сильное притяжение и может снова попасть в воду. Притяжение разгоняет ее, и в итоге возникает тепло. Итак, уходя, молекулы уносят тепло; возвращаясь – приносят. Когда стакан закрыт, баланс сходится, температура воды не меняется. Если же дуть на воду, чтобы испарение превысило оседание молекул, то вода охлаждается. Поэтому, чтобы остудить суп, дуйте на него!

Вы понимаете, конечно, что на самом деле все происходит гораздо сложнее, чем здесь описано. Не только вода переходит в воздух, но молекулы кислорода или азота время от времени переходят в воду и «теряются» в массе молекул воды. Попадание атомов кислорода и азота в воду означает растворение воздуха в воде; если внезапно из сосуда воздух выкачать, то молекулы воздуха начнут из воды выделяться быстрее, чем проникают в нее; мы увидим, как наверх подымаются пузырьки. Вы, наверно, слыхали, что это явление очень вредно для ныряльщиков.

Перейдем теперь к другому процессу. На фиг. 1.6 мы видим, как (с атомной точки зрения) соль растворяется в воде.



Фиг. 1.6. Молекулы соли, растворяющейся в воде.

Что получается, если в воду бросить кристаллик соли? Соль – твердое тело, кристалл, в котором «атомы соли» расставлены правильными рядами. На фиг. 1.7 показано трехмерное строение обычной соли (хлористого натрия).



Фиг. 1.7. Структура кристалла соли.

Строго говоря, кристалл состоит не из атомов, а из ионов. Ионы – это атомы с излишком или с нехваткой электронов. В кристалле соли мы находим ионы хлора (атомы хлора с лишним электроном) и ионы натрия (атомы натрия, лишенные одного электрона). Ионы в твердой соли скреплены друг с другом электрическим притяжением, но в воде некоторые из них, притянувшись к положительному водороду или отрицательному кислороду, начинают свободно двигаться. На фиг. 1.6 виден освободившийся ион хлора и другие атомы, плавающие в воде в виде ионов. На рисунке нарочно подчеркнуты некоторые детали процесса. Заметьте, например, что водородные концы молекул воды обычно обступают ион хлора, а возле иона натрия чаще оказывается кислород (ион натрия положителен, а атом кислорода в молекуле воды отрицателен, поэтому они притягиваются). Можно ли из рисунка понять, растворяется ли здесь соль в воде или же выкристаллизовывается из воды? Ясно, что нельзя; часть атомов уходит из кристалла, часть присоединяется к нему. Процесс этот динамический, подобный испарению; все зависит от того, много или мало соли в воде, в какую сторону нарушено равновесие. Под равновесным понимается такое состояние, когда количество уходящих атомов равно количеству приходящих. Если в воде почти нет соли, то больше атомов уходит в воду, чем возвращается из воды: соль растворяется. Если же «атомов соли» слишком много, то приход превышает уход, и соль выпадает в кристаллы. Мы мимоходом упомянули, что понятие молекулы вещества не совсем точно и имеет смысл только для некоторых видов веществ. Оно применимо к воде, в ней действительно три атома всегда скреплены между собой, но оно не очень подходит к твердому хлористому натрию. Хлористый натрий – это ионы хлора и натрия, образующие кубическую структуру. Нельзя естественным путем сгруппировать их в «молекулы соли».

Вернемся к вопросу о растворении и осаждении соли. Если повысить температуру раствора соли, то возрастет и число растворяющихся атомов и число осаждаемых. Оказывается, что в общем случае трудно предсказать, в какую сторону сдвинется процесс, быстрей или медленней пойдет растворение. С ростом температуры большинство веществ начинает растворяться сильней, а у некоторых растворимость падает.

§ 4. Химические реакции

Во всех описанных процессах атомы и ионы не меняли своих напарников. Но, конечно, возможны обстоятельства, в которых сочетания атомов меняются, образуя новые молекулы. Это показано на фиг. 1.8.



Фиг. 1.8. Уголь, горящий в кислороде.

Процесс, в котором атомные партнеры меняются местами, называется химической реакцией. Описанные нами прежде процессы называются физическими, но трудно указать резкую границу между теми и другими. (Природе все равно, как мы это назовем, она просто делает свое дело.) На картинке мы хотели показать, как уголь горит в кислороде. Молекула кислорода состоит из двух атомов, сцепленных очень крепко. (А почему не из трех или даже не из четырех? Такова одна из характерных черт атомных процессов: атомы очень разборчивы, им нравятся определенные партнеры, определенные направления и т. д. Одна из обязанностей физики – разобраться, почему они хотят именно то, что хотят. Во всяком случае два атома кислорода, довольные и насыщенные, образуют молекулу.)

Предположим, что атомы углерода образуют твердый кристалл (графит или алмаз). Одна из молекул кислорода может пробраться к углероду, каждый ее атом подхватит по атому углерода и улетит в новом сочетании углерод – кислород. Такие молекулы образуют газ, называемый угарным. Его химическое имя СО. Что это значит? Буквы СО – это фактически картинка такой молекулы: С – углерод, О – кислород. Но углерод притягивает к себе кислород намного сильнее, чем кислород притягивает кислород или углерод – углерод. Поэтому кислород для этого процесса может поступать с малой энергией, но, схватываясь с неимоверной жадностью и страстью с углеродом, высвобождает энергию, поглощаемую всеми соседними атомами. Образуется большое количество энергии движения (кинетической энергии). Это, конечно, и есть горение; мы получаем тепло от сочетания кислорода и углерода. Теплота в обычных условиях проявляется в виде движения молекул нагретого газа, но иногда ее может быть так много, что она вызывает и свет. Так получается пламя.

Вдобавок молекулы СО могут не удовольствоваться достигнутым. У них есть возможность подсоединить еще один атом кислорода; возникает более сложная реакция: кислород в паре с углеродом столкнется с другой молекулой СО. Атом кислорода присоединится к СО и в конечном счете образуется молекула из одного углерода и двух кислородов. Ее обозначают С02 и называют углекислым газом. Когда углерод сжигают очень быстро (скажем, в моторе автомашины, где взрывы столь часты, что углекислота не успевает образоваться), то возникает много угарного газа. Во многих таких перестановках атомов выделяется огромное количество энергии, наблюдаются взрывы, вспыхивает пламя и т. д.; все зависит от реакции.

Химики изучили эти расположения атомов и установили, что любое вещество – это свой тип расположения атомов.

Чтобы объяснить эту мысль, рассмотрим новый пример. У клумбы фиалок вы сразу чувствуете их «запах». Это значит, что в ваш нос попали молекулы, или расположения атомов особого рода. Как они туда попали? Ну, это просто. Раз запах – это молекулы особого рода, то, двигаясь и сталкиваясь повсюду, они случайно могли попасть и в нос. Конечно, они не стремились попасть туда. Это просто беспомощные толпы молекул, и в своих бесцельных блужданиях эти осколки вещества, случается, оказываются и в носу.

И вот химики могут взять даже такие необычные молекулы, как молекулы запаха фиалок, проанализировать их строение и описать нам точное расположение их атомов в пространстве. Мы, например, знаем, что молекула углекислого газа пряма и симметрична: О–С–О (это легко обнаружить и физическими методами). Но и для безмерно более сложных, чем те, с которыми имеет дело химия, расположений атомов можно после долгих увлекательных поисков понять, как выглядит это расположение. На фиг. 1.9 изображен воздух над фиалками.



Фиг. 1.9. Запах фиалки.

Снова мы находим здесь азот, кислород, водяной пар… (А он–то откуда здесь? От влажных фиалок. Все растения испаряют воду.)

Среди них, однако, витает «чудовище», сложенное из атомов углерода, водорода и кислорода, облюбовавших для себя особого вида расположение. Это расположение намного сложнее, чем у углекислоты. К сожалению, мы не можем его нарисовать: хотя оно известно химикам очень точно, но оно ведь трехмерное, а как его изобразишь в двух измерениях?! Как нарисовать шесть углеродов, которые образуют кольцо, но не плоское, а «гармошкой»? Все углы, все расстояния в ней известны. Так вот, химическая формула – это просто картина такой молекулы. Когда химик пишет формулу на доске, он, грубо говоря, пытается нарисовать молекулу в двух измерениях. Например, мы видим кольцо из шести углеродов; углеродную цепочку, свисающую с одного конца; кислород, торчащий на конце цепочки; три водорода, привязанные вон к тому углероду; два углерода и три водорода, прилепленные вот здесь, и т. д.

Как же химик узнает, что это за расположение? Возьмет он две пробирки с веществом, сольет их содержимое и смотрит: если смесь покраснела, значит, к такому–то месту молекулы прикреплен один водород и два углерода; если посинела, то… то это ничего не значит. Органическая химия может поспорить с самыми фантастическими страницами детективных романов. Чтобы узнать, как расположены атомы в какой–нибудь невероятно сложной молекуле, химик смотрит, что будет, если смешать два разных вещества! Да физик нипочем не поверит, что химик, описывая расположение атомов, понимает, о чем говорит. Но вот уже больше 20 лет, как появился физический метод, который позволяет разглядывать молекулы (не такие сложные, но по крайней мере родственные) и описывать расположение атомов не по цвету раствора, а по измерению расстояний между атомами. И что же? Оказалось, что химики почти никогда не ошибаются!

Оказывается, что действительно в запахе фиалок присутствуют три слегка различные молекулы, они отличаются только расстановкой атомов водорода.

Одна из проблем в химии – это придумать такое название для вещества, чтобы по нему можно было бы узнать, какое оно. Найти имя для его формы! Но оно должно описывать не только форму, а указывать еще, что здесь стоит кислород, а вон там – водород, чтобы было точно отмечено, где что стоит. Теперь вы понимаете, почему химические названия так сложны. Это не сложность, а полнота. Название молекулы запаха фиалок поэтому таково: 4-(2,2,3,6–тетраметил–5–циклогексан)-3–бутен–2–он. Оно полностью описывает строение молекулы (изображенной на фиг. 1.10), а его длина объясняется сложностью молекулы.



Фиг. 1.10. Структурная формула запаха фиалки.

Дело, значит, вовсе не в том, что химики хотят затуманить мозги, просто им приходится решать сложнейшую задачу описания молекулы словами!

Но откуда мы все–таки знаем, что атомы существуют? А здесь идет в ход уже описанный прием: мы предполагаем их существование, и все результаты один за другим оказываются такими, как мы предскажем, – какими они должны быть, если все состоит из атомов. Существуют и более прямые доказательства. Вот одно из них. Атомы так малы, что ни в какой микроскоп их не увидишь (даже в электронный, а уж в световой и подавно). Но атомы все время движутся, и если бросить в воду большой шарик (большой по сравнению с атомами), то и он начнет подрагивать. Все равно как в игре в пушбол, где большущий мяч толкают с разных сторон две команды. Толкают в разных направлениях, и куда мяч покатится, не угадаешь. Точно так же будет двигаться и «большой мяч» в воде: в разные моменты времени с разных сторон на него будут сыпаться неодинаковые удары. Поэтому когда мы глядим в хороший микроскоп на мельчайшие частички в воде, то видим их непрерывное метание – итог бомбардировки их атомами. Называется это броуновским движением.

Другие доказательства существования атомов можно извлечь из строения кристаллов. Во многих случаях их строение, определенное из опытов по прохождению рентгеновских лучей через кристаллы, согласуется по своему пространственному расположению с формой самого природного кристалла. Углы между разными гранями кристалла согласуются с точностью не до градусов, а до секунд дуги с углами, высчитанными в предположении, что кристалл сложен из множества «слоев» атомов.

Все состоит из атомов. Это самое основное утверждение. В биологии, например, самое важное предположение состоит в том, что все, что делает животное, совершают атомы. Иными словами, в живых существах нет ничего, что не могло бы быть понято с той точки зрения, что они состоят из атомов, действующих по законам физики. Когда–то это не было еще ясно, Потребовалось немало опытов и размышлений, прежде чем высказать это предположение, но теперь оно повсеместно принято и приносит огромную пользу, порождая новые идеи в области биологии.

Да посудите сами! Если уж стальной кубик или кристаллик соли, сложенный из одинаковых рядов одинаковых атомов, может обнаруживать такие интересные свойства; если вода – простые капельки, неотличимые друг от друга и покрывающие миля за милей поверхность Земли, – способна порождать волны и пену, гром прибоя и странные узоры на граните набережной; если все это, все богатство жизни вод – всего лишь свойства сгустков атомов, то сколько же еще в них скрыто возможностей? Если вместо того, чтобы выстраивать атомы по ранжиру, строй за строем, колонну за колонной, даже вместо того, чтобы сооружать из них замысловатые молекулы запаха фиалок, если вместо этого располагать их каждый раз по–новому, разнообразя их мозаику, не повторяя того, что уже было, – представляете, сколько необыкновенного, неожиданного может возникнуть в их поведении. Разве не может быть, что те «тела», которые разгуливают по улице и беседуют с вами, тоже не что иное, как сгустки атомов, но такие сложные, что уже не хватает фантазии предугадывать по их виду их поведение; Когда мы называем себя сгустками атомов, это не значит, что мы – только собрание атомов, потому что такой сгусток, который никогда не повторяется, прекрасно может оказаться способным и на то, чтобы сидеть у стола и читать эти строки.

*Алмаз тоже может сгореть в воздухе.

Глава 2 ОСНОВНЫЕ ФИЗИЧЕСКИЕ ВОЗЗРЕНИЯ

§ 1. Введение

В этой главе будут рассмотрены самые основные представления о физике; здесь будет идти речь о том, как теперь мы представляем себе природу вещей. Я не буду рассказывать историю того, как стало известно, что эти представления правильны; это мы отложим до другого раза.

Предмет науки предстает перед нами во множестве проявлений, в обилии признаков. Спуститесь к морю, вглядитесь в него. Это ведь не просто вода. Это вода и пена, это рябь и набегающие волны, это облака, солнце и голубое небо, это свет и тепло, шум и дыхание ветра, это песок и скалы, водоросли и рыба, их жизнь и гибель, это и вы сами, ваши глаза и мысли, ваше ощущение счастья. И не то ли в любом другом месте, не такое ли разнообразие явлений и влияний? Вы не найдете в природе ничего простого, все в ней перепутано и слито. А наша любознательность требует найти в этом простоту, требует, чтобы мы ставили вопросы, пытались ухватить суть вещей и понять их многоликость как возможный итог действия сравнительно небольшого количества простейших процессов и сил, на все лады сочетающихся между собой.

И мы спрашиваем себя: отличается ли песок от камня? Быть может, это всего лишь множество камешков? А может, и Луна – огромный камень? Тогда, поняв что такое камни, не поймем ли мы тем самым природу песка и Луны? А ветер – что это такое? Может, это всплески воздуха, как вон те всплески воды у берега? Что общего между всяким движением? А есть ли что–нибудь общее между всевозможными звуками? Сколько получится, если пересчитать все цвета? И так далее и так далее. Вот так мы постепенно пробуем проанализировать все вокруг, связать то, что кажется несвязуемым, в надежде, что удастся уменьшить количество различных явлений и тем самым их лучше понять.

Способ получать частичные ответы на подобные вопросы был придуман еще несколько сот лет назад. Наблюдение, размышление и опыт – вот что составляет так называемый научный метод. Мы ограничимся здесь только голым описанием фундаментальных идей физики, основ мировоззрения, возникшего в физике от применения научного метода.

Что значит «понять» что–либо? Представьте себе, что сложный строй движущихся объектов, который и есть мир, – это что–то вроде гигантских шахмат, в которые играют боги, а мы следим за их игрой. В чем правила игры, мы не знаем; все, что нам разрешили, – это наблюдать за игрой. Конечно, если посмотреть подольше, то кое–какие правила можно ухватить. Под основными физическими воззрениями, под фундаментальной физикой мы понимаем правила игры. Но, даже зная все правила, можно не понять какого–то хода просто из–за его сложности или ограниченности нашего ума. Тот, кто играет в шахматы, знает, что правила выучить легко, а вот понять ход игрока или выбрать наилучший ход порой очень трудно. Ничуть не лучше, а то и хуже обстоит дело в природе. Не исключено, что в конце концов все правила будут найдены, но пока отнюдь не все они нам известны. То и дело тебя поджидает рокировка или какой–нибудь другой непонятный ход. Но, помимо того, что мы не знаем всех правил, лишь очень и очень редко нам удается действительно объяснить что–либо на их основе. Ведь почти все встречающиеся положения настолько сложны, что нет никакой возможности, заглядывая в правила, проследить за планом игры, а тем более предугадать очередной ход. Приходится поэтому ограничиваться самыми основными правилами. Когда мы разбираемся в них, то уже считаем, что «поняли» мир.

Но откуда мы знаем, что те правила, которые мы «ощущаем», справедливы на самом деле? Ведь мы не способны толково разобрать ход игры. Существует, грубо говоря, три способа проверки. Во–первых, мыслимы положения, когда природа устроена (или мы ее устраиваем) весьма просто, всего из нескольких частей; тогда можно точно предсказать все, что случится, проверив тем самым правила. (В углу доски может оказаться всего несколько фигур, и все их движения легко себе представить.)

Есть и второй довольно неплохой путь проверки правил: надо из этих правил вывести новые, более общие. Скажем, слон ходит только по диагонали; значит, сколько бы он ни ходил, он всегда окажется, например, на черном поле. Стало быть, не вникая в детали, наши представления о движении слона всегда можно проверить по тому, остается ли он все время на черном поле. Конечно, не исключено, что внезапно слон очутится на белом поле: после того как его побили, пешка прошла на последнюю горизонталь и превратилась в белопольного слона. Так же и в физике. Долгое время мы располагаем правилом, которое превосходно работает повсюду, даже когда детали процесса нам неизвестны, и вдруг иногда всплывает новое правило. С точки зрения физических основ самые интересные явления происходят в новых местах, там, где правила не годятся, а не в тех местах, где они действуют! Так открываются новые правила.

Есть и третий способ убедиться, что наши представления об игре правильны; мало оправданный по существу, он, пожалуй, самый мощный из всех способов. Это путь грубых приближений. Мы можем не знать, почему Алехин пошел именно этой фигурой. Но в общих чертах мы можем понимать, что он, видимо, собирает все фигуры для защиты короля, и сообразить, что в сложившихся обстоятельствах это самое разумное. Точно так же мы часто более или менее понимаем природу, хотя не знаем и не понимаем каждого хода отдельной фигуры.

Когда–то все явления природы грубо делили на классы – теплота, электричество, механика, магнетизм, свойства веществ, химические явления, свет (или оптика), рентгеновские лучи, ядерная физика, тяготение, мезонные явления и т. д. Цель–то, однако, в том, чтобы понять всю природу как разные стороны одной совокупности явлений. В этом задача фундаментальной теоретической физики нынешнего дня: открыть законы, стоящие за опытом, объединить эти классы. Исторически всегда рано или поздно удавалось их слить, но проходило время, возникали новые открытия, и опять вставала задача их включения в общую схему. Однажды уже возникла было слитная картина мира – и вдруг были открыты лучи Рентгена… Со временем произошло новое слияние… и тут обнаружили существование мезонов. Поэтому на любой стадии игра выглядит беспорядочно, незаконченно. Многое бывает объяснено с единой точки зрения, но всегда какие–то проволочки и нитки все же болтаются, всегда где–нибудь торчит что–то несуразное. Таково сегодняшнее положение вещей, которое мы попытаемся описать.

Вот взятые из истории примеры слияния. Во–первых, теплоту удалось свести к механике. Чем сильнее движение атомов, тем больше запас тепла системы; выходит, что теплота, да и все температурные эффекты, могут быть поняты с помощью законов механики. Другое величественное объединение было отпраздновано, когда обнаружилась связь между электричеством, магнетизмом и светом. Оказалось, что это разные стороны одной сущности; сейчас мы называем ее электромагнитным полем. А химические явления, свойства различных веществ и поведение атомных частиц объединились квантовой химией.

Возникает естественный вопрос: будет ли возможно в конце концов все слить воедино и обнаружить, что весь наш мир есть просто различные стороны какой–то одной вещи? Этого никто не знает. Мы только знаем, что по мере нашего продвижения вперед то и дело удается что–то с чем–то объединить, а после опять что–то перестает укладываться в общую картину, и мы заново принимаемся раскладывать части головоломки, надеясь сложить из них что–нибудь целое. А сколько частей в головоломке, и будет ли у нее край – это никому не известно. И не будет известно, пока мы не сложим всей картины, если только когда–нибудь это вообще будет сделано. Здесь мы хотим только показать, насколько далеко зашел процесс слияния, как сегодня обстоит дело с объяснением основных явлений за счет наименьшего количества принципов. Или, выражаясь проще, из чего все состоит и сколько всего таких элементов!

§ 2. Физика до 1920 года

Нам было бы нелегко начать прямо с сегодняшних взглядов. Посмотрим лучше, как выглядел мир примерно в 1920 г., а затем сотрем с этой картины лишнее.

До 1920 г. картина была примерно такова. «Сцена», на которой выступает Вселенная, – это трехмерное пространство, описанное еще Евклидом; все изменяется в среде, называемой временем. Элементы, выступающие на сцене, – это частицы, например атомы; они обладают известными свойствами, скажем свойством инерции: когда частица движется в каком–то направлении, то делает она это до тех пор, пока на нее не подействуют силы. Следовательно, второй элемент – это силы; считалось, что они бывают двух сортов. Первый, чрезвычайно запутанный тип – сила взаимодействия, т. е. сила, скрепляющая атомы в разных их комбинациях; она, например, и решает, быстрее или медленнее начнет растворяться соль при нагревании. Другой же сорт сил – это взаимодействие на далеких расстояниях– притяжение, спокойное и ровное; оно меняется обратно пропорционально квадрату расстояния и именуется тяготением, или гравитацией. Закон ее известен и прост. Но почему тела остаются в движении, начав двигаться, или отчего существует закон тяготения – это было неизвестно.

Продолжаем наше описание природы. С этой точки зрения газ, как, впрочем, и все вещество, это мириады движущихся частиц. Таким образом, многое из увиденного нами на морском берегу теперь запросто увязывается в единое целое. Давление сводится к ударам атомов о стенки; снос атомов (их движение в одну сторону) – это ветер; хаотические внутренние движения – это теплота. Волны – избыток давления, места, где собралось слишком много частиц; разлетаясь, они нагнетают в новых местах такие же скопления частиц; эти волны избытка плотности суть звуки. Понять все это было немаловажным достижением (кое о чем мы уже писали в предыдущей главе).

Какие сорта частиц существуют? В то время считалось, что их 92; восемьдесят девять типов атомов были к тому времени открыты. Каждый тип имел свое название.

Дальше возникала проблема: что такое силы близкодействия. Почему атом углерода притягивает один, в лучшем случае два атома кислорода, но не более? В чем механизм взаимодействия между атомами? Уж не тяготение ли это? Нет. Оно чересчур слабо для этого. Надо представить себе силу, сходную с тяготением, тоже обратно пропорциональную квадрату расстояния, но несравненно более мощную. У нее есть еще одно отличие. Тяготение – это всегда притяжение; допустим теперь, что бывают «предметы» двоякого сорта, и эта новая сила (имеется, конечно, в виду электричество) обладает таким свойством, что одинаковые сорта отталкиваются, а разные притягиваются. «Предмет», несущий с собой это сильное взаимодействие, называется зарядом.

Что же тогда получается? Положим, что два различных сорта (плюс и минус) приложены друг к другу вплотную. Третий заряд находится вдалеке. Почувствует ли он притяжение? Практически нет, если первые два одинаковы по величине: притяжение одного и отталкивание другого уравновесятся. Значит, на заметных расстояниях сила незаметна. Но когда третий заряд приблизится вплотную, то возникнет притяжение: отталкивание однородных зарядов и притяжение разнородных будут стремиться свести между собой разнородные заряды и удалить друг от друга однородные. В итоге отталкивание окажется слабее притяжения. По этой причине атомы, слагающиеся из положительных и отрицательных зарядов, мало влияют друг на друга на заметных расстояниях. Зато уж если они сблизятся, то свободно могут «разглядывать изнутри» друг друга, перестраивать расположение своих зарядов и сильно взаимодействовать. В конечном итоге именно электрическая сила объясняет взаимодействие атомов. Сила эта столь велика, что все плюсы и минусы обычно вступают в предельно тесную связь друг с другом: они стянуты насколько возможно. Все тела, даже наши собственные, состоят из мельчайших плюс–и минус–долек, очень сильно взаимодействующих друг с другом. Количество плюсов и минусов хорошо сбалансировано. Только на мгновение случайно можно соскрести несколько плюсов или минусов (обычно минусы соскребать легче); тогда электрическая сила окажется неуравновешенной и можно почувствовать действие электрического притяжения.

Чтобы дать представление о том, насколько электричество сильнее тяготения, расположим две песчинки размером в миллиметр в 30 м одна от другой. Пусть все заряды только притягиваются и их взаимодействие друг на друга внутри песчинок не погашается взаимно. С какой силой эти две песчинки притягивались бы? С силой в три миллиона тонн! Понимаете теперь, почему малейшего избытка или нехватки положительных или отрицательных зарядов достаточно, чтобы произвести заметное электрическое действие? По той же причине заряженные тела не отличаются ни по массе, ни по размеру от незаряженных: нужно слишком мало частиц, чтобы зарядить тело, чтобы почувствовалось, что оно заряжено.

Зная все это, легко было представить себе и устройство атома. Считалось, что в центре его положительно заряженное электричеством очень массивное «ядро», оно окружено некоторым числом «электронов», очень легких и заряженных отрицательно. Забегая вперед, заметим, что впоследствии в самом ядре были обнаружены два рода частиц – протоны и нейтроны, весьма тяжелые и обладающие близкими массами. Протоны заряжены положительно, а нейтроны не заряжены вовсе. Когда в ядре атома имеется шесть протонов и ядро окружено шестью электронами (отрицательные частицы обычного мира материальных тел – все электроны, они намного легче протонов и нейтронов), то этот атом в химической таблице стоит под номером 6 и называется углеродом. Атом, имеющий номер 8, называется кислородом, и т. д. Химические свойства зависят от внешней оболочки – электронов, а точнее, только от того, сколько их там; все химические особенности вещества зависят от одного–единственного числа – количества электронов. (Список названий элементов, составленный химиками, на самом деле может быть заменен нумерацией 1, 2, 3 и т. д. Вместо того чтобы говорить «углерод», можно было бы сказать «элемент шесть», подразумевая шесть электронов. Но, конечно, когда открывали элементы, не подозревали, что их можно так пронумеровать; к тому же именовать их по номерам не очень удобно. Лучше, чтобы у каждого из них было собственное имя и символ.)

И еще многое другое стало известно об электрической силе. Естественно было бы толковать электрическое взаимодействие как простое притяжение двух предметов, положительно и отрицательно заряженных. Однако выяснилось, что такой подход плохо помогает уяснению природы электрической силы. Толкование, более отвечающее положению вещей, таково: когда где–то имеется положительный заряд, то он искривляет в каком–то смысле пространство, создает в нем некоторое условие для того, чтобы минус–заряд, помещенный в это пространство, ощутил действие силы. Эта возможность порождать силы называется электрическим полем. Когда электрон помещен в электрическое поле, мы говорим, что он «притягивается». При этом действуют два правила: а) заряды создают поле и б) на заряды в поле действуют силы, заставляя их двигаться. Причина этого станет ясна, когда мы разберем следующее явление. Если мы зарядим тело, скажем расческу, электричеством, а затем положим рядом заряженный клочок бумаги и начнем водить расческой взад и вперед, то бумага будет все время поворачиваться к расческе. Ускорив движение расчески, можно обнаружить, что бумага несколько отстает от ее движения, возникает запаздывание действия. (Сперва, когда мы водим расческой медленно, дело усложняется магнетизмом. Магнитные влияния появляются, когда заряды движутся, друг относительно друга, так что магнитные и электрические силы в действительности могут оказаться проявлениями одного и того же поля, двумя сторонами одного и того же явления. Изменяющееся электрическое поле не может существовать без магнитного действия.) Если бумагу отодвинуть, запаздывание возрастет. И тогда наблюдается интересная вещь. Хотя сила, действующая между двумя заряженными телами, изменяется обратно квадрату расстояния, при колебаниях заряда его влияние простирается намного дальше, чем можно было ожидать. Это значит, что оно уменьшается медленнее, чем по закону обратных квадратов.

Что–то похожее на это происходит, если в бассейн с водой брошен поплавок; можно подействовать на него «непосредственно», бросив в воду поблизости другой поплавок; при этом если вы смотрели только на поплавки (не на воду), то вы увидите лишь, что один из них сместился в ответ на движения другого, т. е. что между ними существует какое–то взаимодействие. А ведь дело только в том, что вы взволновали воду: это вода шевельнула второй поплавок. Из этого можно даже вывести «закон»: если шевельнуть чуть–чуть поплавок, все соседние поплавки зашевелятся. Будь поплавок подальше, он бы едва покачнулся, ведь мы возмутили поверхность воды один раз и в одном месте. Но когда мы начнем непрерывно покачивать поплавок, возникнет новое явление: побегут волны и влияние колебаний поплавка распространится намного дальше. Это будет колебательное влияние, и уж его не объяснить прямым взаимодействием поплавков. Мысль о непосредственном взаимодействии придется заменить предположением о существовании воды или, для электрических зарядов, того, что называется электромагнитным полем.

Электромагнитное поле может передавать волны; одни волны – это световые, другие – радиоволны, общее же их название электромагнитные волны. Частота колебаний этих волн разная. Только этим они и отличаются одна от другой. Все чаще и чаще колебля заряд вверх–вниз и наблюдая затем, что получится, мы увидим разные эффекты; все они могут быть сведены в единую систему, если дать каждому свой номер – число колебаний в секунду. Обычные помехи от тока, текущего по проводам в жилых домах, имеют частоту порядка сотни колебаний в секунду. Повысив частоту до 500–1000 килогерц (1 кгц=1000 колебаний в секунду), мы из квартиры выйдем «на воздух», потому что это – область радиочастот. (Воздух здесь, конечно, не при чем! Радиоволны распространяются и в безвоздушном пространстве.) Увеличив еще частоты, мы доберемся до ультракоротких волн и телевидения. Затем пойдут совсем короткие волны, их назначение – радиолокация. Еще дальше, и нам уже не нужно приборов, чтобы регистрировать эти волны, их можно видеть невооруженным глазом. В полосе частот от 5•1014 до 5•1015гц колебания заряженной расчески (если наловчиться колебать ее так быстро) предстали бы перед нами в зависимости от частоты как красный, голубой или фиолетовый свет. Частоты с одной стороны полосы называются инфракрасными, а с другой – ультрафиолетовыми. Тот факт, что мы способны видеть на определенных частотах, с физической точки зрения не делает эту часть электромагнитного спектра более впечатляющей, но с человеческой точки зрения это, конечно, самая интересная часть спектра. Продвигаясь по частоте еще дальше, мы получим рентгеновские лучи; это всего лишь высокочастотный свет. А еще дальше пойдет гамма–излучение (табл. 2.1). Гамма–излучение и рентгеновские лучи – почти одно и то же. Обычно те электромагнитные волны, которые исходят от ядер, называют гамма–излучением, а те, которые исходят от атомов, – рентгеновскими лучами, но если их частота совпадет, то физически эти волны уже не отличишь, каков бы ни был их источник. Волны еще более высоких частот, скажем 1024гц, можно, оказывается, получать искусственно, на ускорителях; на синхротроне в КАЛТЕХе это делается.

Таблица 2.1. ЭЛЕКТРОМАГНИТНЫЙ СПЕКТР



И наконец, неслыханно высокие частоты (в тысячу раз больше) обнаруживаются далее в волнах, присутствующих в космических лучах. Эти волны мы уже не умеем контролировать.

§ 3. Квантовая физика

Мы описали электромагнитное поле и поняли, что оно может передаваться как волны. Сейчас мы увидим, что на самом деле эти волны ведут себя очень странно: они отнюдь не похожи на волны. На высоких частотах они гораздо больше смахивают на частицы! Наука, которая умеет объяснять такое странное поведение, – квантовая механика – была изобретена вскоре после 1920 г. Еще до этого привычную картину трехмерного пространства и отдельно существующего времени изменил Эйнштейн; сперва он превратил ее в сочетание, называемое «пространство–время», а потом, чтобы объяснить тяготение, – еще и в «искривленное пространство–время». Таким образом, «сценой» стало уже пространство–время, а тяготение, по всей вероятности, это видоизмененное пространство–время.

А затем также выяснилось, что и законы движения частиц неверны. Механические законы «инерции» и «силы», законы Ньютона – все они оказались непригодными в мире атомов. Было обнаружено, что поведение мельчайших телец ничем не напоминает поведения обычных, больших тел. Конечно, физика от этого становится труднее, но зато намного интереснее. Труднее потому, что поведение малых телец совершенно «неестественно»; оно противоречит нашему опыту, оно вообще ни на что не похоже и его нельзя описать никаким иным путем, кроме аналитического; а ведь это требует большого воображения.

Много особенностей есть у квантовой механики. В первую очередь она запрещает считать, что частица может двигаться через определенное точно указанное место с определенной точно указанной скоростью. Чтоб показать, насколько ошибочна обычная механика, отметим, что в квантовой механике имеется правило, согласно которому никто в одно и то же время не может знать и место и быстроту движения частицы. Неопределенность в импульсе и неопределенность в положении частицы дополняют друг друга: их произведение постоянно. Мы пока напишем это правило в виде ?x?p?h/2?, не вникая в подробности. Это правило представляет собой объяснение таинственного парадокса: раз атомы сделаны из плюс–и минус–зарядов, отчего бы минус–зарядам просто не усесться на плюс–заряды (они ведь притягиваются), отчего бы им не сблизиться до того тесно, что они погасят друг друга? Почему атомы столь велики? Почему ядро находится в центре, а электроны – вокруг него? Сперва объясняли это тем, что ядро очень велико; но ведь это не так, оно очень мало. Диаметр атома примерно 10–8см, а ядpa–что–то около 10–13см. Чтобы увидеть ядро, надо было бы атом увеличить до размеров комнаты, и то ядро казалось бы малюсеньким, едва–едва различимым пятнышком; при этом все же почти весь вес атома приходился бы на бесконечно маленькое ядро. Но почему же электроны не падают на него? А вот из–за того же принципа неопределенности: если б электроны оказались в ядре, мы бы очень точно знали их положение и, следовательно, их импульс непременно должен был бы стать очень большим (но неопределенным), а, значит, кинетическая энергия тоже резко бы возросла. С такой энергией он бы выскочил из ядра. Немудрено, что ядро идет на соглашение с электронами: они оставляют себе какое–то место для этой неопределенности и затем колеблются с некоторым наименьшим запасом движения, лишь бы не нарушить этого правила. (Вспомните еще, что когда кристалл охлажден до абсолютного нуля, мы считаем, что атомы все же не прекращают своего движения, они все еще колеблются. Почему? Да если бы атомы остановились, мы бы знали и то, что они стоят, и где стоят, а это противоречит принципу неопределенности. Мы не смеем знать и где они и сколь быстро движутся, вот атомы и вынуждены беспрерывно дрожать!)

А вот другое интереснейшее изменение в идеях и философии науки, осуществленное квантовой механикой: невозможно никогда предсказать точно, что произойдет в каких–то обстоятельствах. Например, можно приготовить атом, способный излучать свет; момент испускания света мы можем заметить, поймав фотон (будет время, мы поговорим об этом). Но мы не можем предсказать, когда он собирается излучить, или если атомов несколько, то какой из них испустит свет. Может быть, по–вашему, все это из–за того, что в атомах есть какие–то внутренние «колесики», которых мы еще не разглядели? Нет, в атоме нет потайных колес; природа, насколько мы ее сегодня понимаем, ведет себя так, что принципиально невозможно делать точные предсказания о том, что именно произойдет в данном опыте. Ужасно, не правда ли? Ведь философы прежде всегда нас учили, что одно из основных свойств науки, неотделимых от нее, – это требование, чтобы в одинаковых условиях всегда происходили одни и те же события. Но это просто неверно, это вовсе не основное условие науки. На самом деле в равных обстоятельствах одинаковые события не происходят; предсказать их можно только в среднем, только статистически. И все–таки наука еще не совсем погибает.

Кстати, философы порой много говорят о вещах, совершенно необходимых науке; и это всегда, как можно в том убедиться, весьма наивно и, по всей видимости, ошибочно. К примеру, некоторые философы, и не только философы, утверждали, что для научных открытий существенно, чтобы один и тот же опыт, сделанный, скажем, в Стокгольме и в Кито, приводил к одним и тем же результатам. Но ведь это абсолютно неверно. Для науки это условие необязательно; оно может быть установлено после опыта, но нельзя этого требовать до опыта. Если, например, в Стокгольме проделан опыт по наблюдению северного сияния, то с какой стати он должен удастся в Кито? Вы там и сияния–то не увидите. «Но это ясно, – скажете вы. – Ничего иного и не могло быть, раз вы исследуете что–то внешнее, далекое от нас. А вот вы заберитесь в Стокгольме в ящик и закройте в нем шторки, получите ли вы тогда хоть какое–нибудь различие?» Бесспорно. Подвесьте в ящике маятник на шарнирном подвесе, его плоскость во время качаний начнет в Стокгольме медленно поворачиваться, а в Кито – нет, хотя шторки и там и там опущены. И этот факт вовсе не приведет к гибели науки. Ведь в чем ее основное предположение, ее фундаментальная философия? Мы уже сказали об этом в гл. 1: единственное мерило справедливости любой идеи – это опыт. Если выясняется, что большинство экспериментов в Кито приводят к тому же, что и в Стокгольме, то из этого «большинства экспериментов» можно вывести общий закон, а про те эксперименты, которые не приводят к одинаковым результатам, мы скажем, что на них повлиял характер местности близ Стокгольма. Мы можем разными способами подытоживать опыты, но пусть нас прежде времени не учат, что это за способы. Если нам говорят, что одни и те же опыты всегда должны приводить к одним и тем же результатам, – это прекрасно; но когда проверка покажет, что \' это не так, стало быть, это не так. Верьте только своим глазам, а прочие свои идеи формулируйте уже на основе опыта.

Вернемся опять к квантовой механике и к основам физики. Мы не будем пока входить в детали квантовомеханических принципов, их не так просто понять. Мы их просто примем, как они есть, а остановимся на кое–каких их следствиях. Вот одно из них: то, что мы обычно считаем волнами, может вести себя как частица; частицы же ведут себя как волны; то же относится и к любым телам. Между волной и частицей просто нет различия. Квантовая механика объединяет идею поля, волн поля и частиц в одно. При низких частотах волновые свойства проявляются более явственно и поэтому оказываются полезнее для приближенного описания в образах нашего повседневного опыта. Но по мере того, как частота возрастает, становится все очевиднее, что через приборы, измеряющие наше явление, проходит не волна, а частица. На самом деле, хоть мы и говорим о высоких частотах, волновые явления, если частота их превышает 1012гц, заметить уже нельзя. Мы только приходим к выводу о наличии высокой частоты, зная энергию частиц и предполагая, что верна идея квантовой механики о частице–волне.

Возникает к тому же и новый взгляд на электромагнитное взаимодействие. В добавление к электрону, протону и нейтрону появляется новая частица, называемая фотоном. Само это новое воззрение на взаимодействие электронов и протонов, т. е. электромагнитную теорию, правильную в квантовомеханическом смысле, называют квантовой электродинамикой. Эту фундаментальную теорию взаимодействия света и вещества, или электрического поля и зарядов, следует считать крупнейшим достижением физики. В ней одной таятся главные правила всех обычных явлений, кроме тяготения и ядерных процессов. Например, из квантовой электродинамики выводятся все известные электрические, механические и химические законы, законы соударений бильярдных шаров, движения проводников в магнитном поле, удельной теплоемкости угарного газа, цвета неоновых букв, плотности соли и реакции образования воды из водорода и кислорода. Все это поддается расчету, если условия, в каких протекает явление, просты. Практически этого никогда не случается, но все же мы более или менее понимаем, что происходит. И до сего времени не было найдено ни одного исключения из законов квантовой электродинамики, только в атомных ядрах ее оказывается недостаточно; да и про них мы не можем сказать, что здесь наблюдаются какие–то исключения, просто мы не знаем, что там происходит.

Далее, квантовая электродинамика – в принципе это также теория всей химии и всех жизненных процессов, если предположить, что жизнь сводится в конечном счете к химии, а значит, и к физике (сама химия уже свелась к физике, и та часть физики, которая включает в себя химию, уже разработана). Мало того, та же квантовая электродинамика, эта величественная наука, предсказывает немало и новых явлений. Во–первых, она говорит о свойствах фотонов очень высоких энергий, гамма–излучения и т. д. Она предсказала еще одно очень оригинальное явление, а именно, что, кроме электрона, должна существовать другая частица с той же массой, но с противоположным зарядом, так называемый позитрон, и что электрон и позитрон, повстречавшись, могут друг друга истребить, излучив при этом свет или гамма–кванты (что, собственно, одно и то же; свет и ? — излучение – лишь разные точки на шкале частот).

По–видимому, справедливо и обобщение этого правила: существование античастицы для любой частицы. Античастица электрона носит имя позитрона; у других частиц названия присвоены по другому принципу: если частицу назвали так–то, то античастицу называют анти–так–то, скажем, антипротон, антинейтрон. В квантовую электродинамику вкладывают всего два числа (они называются массой электрона и зарядом электрона) и полагают, что все остальные числа в мире можно вывести из этих двух. На самом деле, однако, это не совсем верно, ибо существует еще целая совокупность химических чисел – весов атомных ядер. Ими нам и следует сейчас заняться.

§4. Ядра и частицы

Из чего состоят ядра? Чем части ядра удерживаются вместе? Обнаружено, что существуют силы огромной величины, которые и удерживают составные части ядра. Когда эти силы высвобождаются, то выделяемая энергия по сравнению с химической энергией огромна, это все равно, что сравнить взрыв атомной бомбы со взрывом тротила. Объясняется это тем, что атомный взрыв вызван изменениями внутри ядра, тогда как при взрыве тротила перестраиваются лишь электроны на внешней оболочке атома.

Так каковы же те силы, которыми нейтроны и протоны скреплены в ядре?

Электрическое взаимодействие связывают с частицей – фотоном. Аналогично этому Юкава предположил, что силы притяжения между протоном и нейтроном обладают полем особого рода, а колебания этого поля ведут себя как частицы. Значит, не исключено, что, помимо нейтронов и протонов, в мире существуют некоторые иные частицы. Юкава сумел вывести свойства этих частиц из уже известных характеристик ядерных сил. Например, он предсказал, что они должны иметь массу, в 200– 300 раз большую, чем электрон. И– о, чудо! – в космических лучах как раз открыли частицу с такой массой! Впрочем, чуть погодя выяснилось, что это совсем не та частица. Назвали ее ? — мезон, или мюон.

И все же несколько попозже, в 1947 или 1948г., обнаружилась частица – ? — мезон, или пион, – удовлетворявшая требованиям Юкавы. Выходит, чтобы получить ядерные силы, к протону и нейтрону надо добавить пион. «Прекрасно! – воскликнете вы. – С помощью этой теории мы теперь соорудим квантовую ядродинамику, и пионы послужат тем целям, ради которых их ввел Юкава; посмотрим, заработает ли эта теория, и если да, то объясним все». Напрасные надежды! Выяснилось, что расчеты в этой теории столь сложны, что никому еще не удалось их проделать и извлечь из теории какие–либо следствия, никому не выпала удача сравнить ее с экспериментом. И тянется это уже почти 20 лет!

С теорией что–то не клеится; мы не знаем, верна она или нет; впрочем, мы уже знаем, что в ней чего–то не достает, что какие–то неправильности в ней таятся. Покуда мы топтались вокруг теории, пробуя вычислить следствия, экспериментаторы за это время кое–что открыли. Ну, тот же ? — мезон, или мюон. А мы до сей поры не знаем, на что он годится. Опять же, в космических лучах отыскали множество «лишних» частиц. К сегодняшнему дню их уже свыше 30, а связь между ними все еще трудно ухватить, и непонятно, чего природа от них хочет и кто из них от кого зависит. Перед нами все эти частицы пока не тот факт, что имеется куча разрозненных частиц, есть лишь отражение наличия бессвязной информации без сносной теории. После неоспоримых успехов квантовой электродинамики – какой–то набор сведений из ядерной физики, обрывки знаний, полуопытных–полутеоретических. Задаются, скажем, характером взаимодействия протона с нейтроном и смотрят, что из этого выйдет, не понимая на самом деле, откуда эти силы берутся. Сверх описанного никаких особых успехов не произошло.

Но химических элементов ведь тоже было множество, и внезапно между ними удалось увидеть связь, выраженную периодической таблицей Менделеева. Скажем, калий и натрий – вещества, близкие по химическим свойствам, – в таблице попали в один столбец. Так вот, попробовали соорудить таблицу типа таблицы Менделеева и для новых частиц. Одна подобная таблица была предложена независимо Гелл–Манном в США и Нишиджимой в Японии. Основа их классификации – новое число, наподобие электрического заряда. Оно присваивается каждой частице и называется ее «странностью» S. Число это не меняется (так же как электрический заряд) в реакциях, производимых ядерными силами.

В табл. 2.2 приведены новые частицы. Мы не будем пока подробно говорить о них. Но из таблицы по крайней мере видно, как мало мы еще знаем. Под символом каждой частицы стоит ее масса, выраженная в определенных единицах, называемых мегаэлектронвольт, или Мэв (1 Мэв– это 1,782?10–27 г). Не будем входить в исторические причины, заставившие ввести эту единицу. Частицы помассивнее стоят в таблице повыше. У (p –938,3; n–939,6). В одной колонке стоят частицы одинакового электрического заряда, нейтральные – посерединке, положительные – направо, отрицательные – налево.

Частицы подчеркнуты сплошной линией, «резонансы» – штрихами. Некоторых частиц в таблице нет совсем: нет фотона и гравитона, очень важных частиц с нулевыми массой и зарядом (они не попадают в барион–мезон–лептонную схему классификации), нет и кое–каких новейших резонансов (?, f, ? и др.). Античастицы мезонов в таблице приводятся, а для античастиц лептонов и барионов надо было бы составить новую таблицу, сходную с этой, но только зеркально отраженную относительно нулевой колонки. Хотя все частицы, кроме электрона, нейтрино, фотона, гравитона и протона, неустойчивы, продукты их распада написаны только для резонансов. Странность лептонов тоже не написана, так как это понятие к ним неприменимо – они не взаимодействуют сильно с ядрами.

Таблица 2.2 ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ



Частицы, стоящие вместе с нейтроном и протоном, называют барионами. Это «лямбда» с массой 1115,4 Мэв и три другие – «сигмы», называемые сигма–минус, сигма–нуль, сигма–плюс, с почти одинаковыми массами. Группы частиц почти одинаковой массы (отличие на 1–2%) называются мультиплетами. У всех частиц в мультиплете странность одинакова. Первый мультиплет – это пара (дублет) протон – нейтрон, потом идет синглет (одиночка) лямбда, потом – триплет (тройка) сигм, дублет кси и синглет омега–минус. Начиная с 1961 г., начали открывать новые тяжелые частицы. Но частицы ли, они? Живут они так мало (распадаются, едва возникнув, на ? и ?), что неизвестно, назвать ли их новыми частицами или считать «резонансным» взаимодействием между ? и ? при некоторой фиксированной энергии.

Для ядерных взаимодействий, кроме барионов, необходимы другие частицы – мезоны. Это, во–первых, три разновидности пионов (плюс, нуль и минус), образующие новый триплет. Найдены и новые частицы – К–мезоны (это дублет K+ и K0). У каждой частицы бывает античастица, если только частица не оказывается своей собственной античастицей, скажем ?+ и ? — – античастицы друг друга, а ?0 – сам себе античастица. Античастицы и K–с K+ и K0 с K0\'. Кроме того, после 1961 г. мы начали открывать новые мезоны, или вроде–мезоны, распадающиеся почти мгновенно. Одна такая диковинка называется омега, ?, ее масса 783, она превращается в три пиона; есть и другое образование, из которого получается пара пионов.

Подобно тому как из очень удачной таблицы Менделеева выпали некоторые редкие земли, точно так же из нашей таблицы выпадают некоторые частицы. Это те частицы, которые с ядрами сильно не взаимодействуют, к ядерному взаимодействию отношения не имеют и между собой сильно тоже не взаимодействуют (под сильным понимается мощный тип взаимодействия, дающего атомную энергию). Называются эти частицы лептоны; к ним относятся электрон (очень легкая частица с массой 0,51 Мэв) и мюон (с массой в 206 раз больше массы электрона). Насколько мы можем судить по всем экспериментам, электрон и мюон различаются только массой. Все свойства мюона, все его взаимодействия ничем не отличаются от свойств электрона – только один тяжелее другого. Почему он тяжелее, какая ему от этого польза, мы не знаем. Кроме них, есть еще нейтральный лептон – нейтрино, с массой нуль. Более того, сейчас известно, что есть два сорта нейтрино: одни, связанные с электронами, а другие – с мюонами.

И наконец, существуют еще две частицы, тоже с ядрами не взаимодействующие. Одну мы знаем уже – это фотон; а если поле тяготения также обладает квантовомеханическими свойствами (хотя пока квантовая теория тяготения не разработана), то, возможно, существует и частица гравитон с массой нуль.

Что такое «масса нуль»? Массы, которые мы приводили, это массы покоящихся частиц. Если у частицы масса нуль, то это значит, что она не смеет покоиться. Фотон никогда не стоит на месте, скорость его равна всегда 300 000 км/сек. Мы с вами еще разберемся в теории относительности и попытаемся глубже вникнуть в смысл понятия массы.

Итак, мы встретились с целым строем частиц, которые все вместе, по–видимому, являются очень фундаментальной частью вещества. К счастью, эти частицы не все отличаются по своему взаимодействию друг от друга. Видимо, есть только четыре типа взаимодействий между ними. Перечислим их в порядке убывающей силы: ядерные силы, электрические взаимодействия, ? — распадное взаимодействие и тяготение. Фотон взаимодействует со всеми заряженными частицами с силой, характеризуемой некоторым постоянным числом 1/137. Детальный закон этой связи известен – это квантовая электродинамика. Тяготение взаимодействует со всякой энергией, но чрезвычайно слабо, куда слабее, чем электричество. И этот закон известен. Потом идут так называемые слабые распады: ? — распад, из–за которого нейтрон распадается довольно медленно на протон, электрон и нейтрино. Тут закон выяснен лишь частично. А так называемое сильное взаимодействие (связь мезона с барионом) обладает по этой шкале силой, равной единице, а закон его совершенно темен, хоть и известны кое–какие правила, вроде того, что количество барионов ни в одной реакции не меняется.

Таблица 2.3 ЭЛЕМЕНТАРНЫЕ ВЗАИМОДЕЙСТВИЯ



Положение, в котором находится современная физика, следует считать ужасным. Я бы подытожил его такими словами: вне ядра мы, видимо, знаем все; внутри него справедлива квантовая механика, нарушений ее принципов там не найдено.

Сцена, на которой действуют все наши знания, – это релятивистское пространство–время; не исключено, что с ним связано и тяготение. Мы не знаем, как началась Вселенная, и мы ни разу не ставили опытов с целью точной проверки наших представлений о пространстве–времени на малых расстояниях, мы только знаем, что вне этих расстояний наши воззрения безошибочны. Можно было бы еще добавить, что правила игры – это принципы квантовой механики; и к новым частицам они, насколько нам известно, приложимы не хуже, чем к старым. Поиски происхождения ядерных сил приводят нас к новым частицам; но все эти открытия вызывают только замешательство. У нас нет полного понимания их взаимных отношений, хотя в некоторых поразительных связях между ними мы уже убедились. Мы, видимо, постепенно приближаемся к пониманию мира заатомных частиц, но неизвестно, насколько далеко мы ушли по этому пути.

Глава 3 ФИЗИКА И ДРУГИЕ НАУКИ

§ 1. Введение

Физика – это самая фундаментальная из всех наук, самая всеобъемлющая; огромным было ее влияние на все развитие науки. Действительно, ведь нынешняя физика вполне равноценна давнишней натуральной философии, из которой возникло большинство современных наук. Не зря физику вынуждены изучать студенты всевозможных специальностей; во множестве явлений она играет основную роль.

В этой главе мы попытаемся рассказать, какого рода фундаментальные проблемы встают перед соседними науками. Жаль, что нам не придется по–настоящему заняться этими науками, их проблемами; мы не сможем прочувствовать всю их сложность, тонкость и красоту. Из–за нехватки места мы не коснемся также связи физики с техникой, с промышленностью, с общественной жизнью и военным искусством. Даже на замечательной связи, объединяющей физику с математикой, мы не задержимся. (Математика, с нашей точки зрения, не наука в том смысле, что она не относится к естественным наукам. Ведь мерило ее справедливости отнюдь не опыт.) Кстати, не все то, что не наука, уж обязательно плохо. Любовь, например, тоже не наука. Словом, когда какую–то вещь называют не наукой, это не значит, что с нею что–то неладно: просто не наука она, и всё.

§ 2. Химия

Химия испытывает на себе влияние физики, пожалуй, сильней, чем любая другая наука. Когда–то, в свои младенческие годы, когда химия почти целиком сводилась к тому, что мы сейчас называем неорганической химией (т. е. химии веществ, не связанных с живыми телами), когда кропотливым трудом химиков открывались многие химические элементы, их связь друг с другом, изучались их соединения, анализировался состав почвы и минералов, в те годы химия сыграла важную роль в становлении физики. Эти науки взаимодействовали очень сильно: вся теория атомного строения вещества получила основательную поддержку в химическом эксперименте. Химическую теорию, т. е. теорию самих реакций, подытожила периодическая система Менделеева. Она выявила немало удивительных связей между разными элементами – стало ясно, что с чем и как соединяется; все эти правила составили неорганическую химию. Сами они в свою очередь были в конечном счете объяснены квантовой механикой. Стало быть, на самом деле теоретическая химия – это физика. Однако объяснение, даваемое квантовой механикой, – это все–таки объяснение в принципе. Мы уже говорили, что знание шахматных правил – это одно, а умение играть – совсем другое. Можно знать правила, а играть неважно. Точно так же очень и очень непросто точно предсказать, что произойдет в такой–то химической реакции. И все же в самых глубинах теоретической химии лежит квантовая механика.

Есть к тому же ветвь физики и химии, и очень важная ветвь, к которой они обе приложили руки. Речь идет о применении статистики к тем случаям, когда действуют законы механики, т. е. о статистической механике. В любой химической реакции действует много атомов, а движения их случайны и замысловаты. Если бы мы могли проанализировать каждое столкновение, подробно проследить движение каждой молекулы, то мы бы всегда знали, что случится. Но нужно так много чисел, чтобы отметить путь всех молекул, что никакой емкости вычислительной машины и уж во всяком случае емкости мозга не хватит. Ззначит, важно научиться работать с такими сложными системами. Статистическая механика, кроме того, лежит в основе теории тепловых явлений, или термодинамики.

В наше время неорганическая химия как наука свелась в основном к физической и квантовой химии; первая изучает скорости реакций и прочие их детали (как попадает молекула в молекулу, какая из частей молекулы оторвется первой и т. д.), а вторая помогает понимать происходящее на языке физических законов.

Другая ветвь химии – органическая химия, химия веществ, связанных с жизненными процессами. Одно время думали, что подобные вещества столь необыкновенны, что их не изготовишь своими руками из неорганических веществ. Но это оказалось не так: органические вещества отличаются от неорганических только большей сложностью расположения атомов. Органическая химия, естественно, тесно связана с биологией, снабжающей ее веществами, и с промышленностью; далее, многое из физической химии и квантовой механики столь же приложимо к органическим соединениям, как и к неорганическим. Впрочем, главные задачи органической химии вовсе не в этом, а в анализе и синтезе веществ, образуемых в биологических системах, в живых телах. Отсюда можно постепенно перейти к биохимии и к самой биологии, т. е. к молекулярной биологии.

§ 3. Биология

Итак, мы пришли к науке, которая занята изучением живого, – к биологии. Когда она делала свои первые шаги, биологи решали чисто описательные задачи; им нужно было выяснить, каким бывает живое, им приходилось, скажем, подсчитывать, сколько у блохи на ноге волосков, и т. д. Когда все это (с большим интересом) было изучено, они обратились к механизму функционирования живого, сперва, естественно, очень грубо, в общих чертах, потому что в разных тонкостях разобраться было непросто.

Когда–то между биологией и физикой существовали интересные отношения: именно биология помогла физике открыть закон сохранения энергии; ведь Майер установил этот закон при изучении количества тепла, выделяемого и поглощаемого живым организмом.

Если вглядеться в биологию живых организмов, можно заметить множество чисто физических явлений: циркуляцию крови, давление и т. п. Взять, к примеру, нервы. Наступив на острый камешек, мы мгновенно узнаем об этом: что–то нам о том говорит, какая–то информация поднимается вверх по ноге. Как же это происходит? Изучая нервы, биологи пришли к выводу, что это очень нежные трубочки со сложными, очень тонкими стенками. Через эти стенки в клетку поступают ионы; получается нечто вроде конденсатора с положительными ионами\' снаружи и отрицательными внутри. У такой мембраны есть замечательное свойство: если в одном месте она «разряжается», т. е. если в каком–то месте ионы пройдут насквозь, так что электрическое напряжение здесь упадет, то соседние ионы почувствуют это электрическое влияние; это так подействует на мембрану в соседнем месте, что она тоже пропустит сквозь себя ионы. В свою очередь это скажется на следующем месте и т. д. Возникнет волна «проницаемости» мембраны; она побежит вдоль нервного волокна, если один конец его «возбудится» острым камнем. Выходит словно длинная цепочка костяшек домино, поставленных торчком; толкнешь крайнюю, она – следующую и т. д. Конечно, больше одного сообщения так не передашь, надо снова поднять все костяшки; и в нервной клетке тоже после этого идут процессы медленного накопления ионов и подготовки нерва к новому импульсу. Так мы узнаём, что мы делаем (или по крайней мере где мы находимся). Электрические явления при прохождении нервного импульса, конечно, можно регистрировать электрическими приборами. Поскольку эти явления существуют, то без физики электричества нельзя понять проводимость по нерву.

Обратное явление происходит, когда откуда–то из мозга по нерву передается сообщение. Что делается тогда на конце нерва? Нерв там дает разветвления, которые связаны с мышечной структурой; называют их концевые ответвления. По причинам, точно не известным, в момент, когда импульс достигает конца нерва, из него вылетают маленькие пакетики реактивов, называемых ацетилхолин (5–10 молекул за раз); они влияют на мышечное волокно, и оно сокращается – видите, как все просто! Но что же все–таки вынуждает мышцу сокращаться? Мышца – это большое число плотно расположенных волокон; в них содержатся два разных вещества – миозин и актомиозин; и все же механизм, при помощи которого химическая реакция, вызванная ацетилхолином, меняет размер молекулы, пока еще не выяснен. Иначе говоря, неизвестны самые основные процессы, ответственные за механические движения мышц.

Биология – настолько широкое поле деятельности, что есть уйма проблем, о которых мы даже не упоминаем; скажем, вопрос о том, как осуществляется зрение (что свет делает внутри глаза) или как работает ухо и т. д, (Как работает мысль, мы обсудим позже, когда будем говорить о психологии.)

Так вот, все эти вопросы, стоящие перед биологией, на самом деле для биолога отнюдь не главные, отнюдь не они лежат в основе жизни. Если мы их и поймем, нам все равно не понять сущности жизни. Вот вам пример: люди, изучающие нервы, понимают, что их работа очень нужна, ведь животных без нервов не бывает. Но жизнь без нервов возможна. У растений нет ни нервов, ни мышц, и все же они работают, живут (что одно и то же). Значит, самые фундаментальные проблемы биологии нужно искать глубже.

При этом мы установим, что у всех живых существ есть много общих черт. Самое же общее между ними то, что они состоят из клеток, внутри каждой из которых действует сложный механизм химических превращений. В растительных клетках, например, есть механизм поглощения света и выработки сахарозы, которая потом в темноте поглощается, поддерживая жизнь растения. Когда животное поедает растение, сахароза порождает в животном цепь химических реакций, тесно связанных с фотосинтезом растений (и обратной цепочкой в темноте).

В клетках живых организмов происходит множество хитро задуманных химических реакций: одно соединение превращается в другое, затем в третье, затем еще и еще. Фиг. 3.1 дает некое представление о гигантских усилиях, предпринятых в изучении биохимии; там сведены воедино наши знания о малой доле того множества цепочек реакций (может быть, примерно 1% общего количества), которые происходят в клетке.



Фиг. 3.1. Цикл Кребса.

Вы видите здесь ряд молекул, последовательно превращающихся одна в другую, – цикл с довольно мелкими шагами. Это – цикл Кребса, или дыхательный цикл. Судя по изменениям в молекулах, каждое вещество и каждый шаг в цикле довольно просты. Но эти изменения относительно трудно воспроизводятся, лабораторным путем. Это открытие необыкновенной важности в биохимии. Дело вот в чем. Если есть два сходных вещества, то как раз их–то часто нельзя превратить друг в друга, потому что эти две формы обычно отделены энергетическим барьером, «перевалом». Ведь, желая перенести предмет на новое место на том же уровне по другую сторону перевала, вы сперва должны поднять его над перевалом. Это требует добавочной затраты энергии. По той же причине многие реакции не происходят, им не хватает так называемой энергии активации. Если вы хотите присоединить к химическому соединению лишний атом, то для того, чтобы он пристал куда надо, его следует придвинуть вплотную, иначе нужная перестановка не произойдет, он лишь немного взбежит по «склону» и скатится обратно. Но если б вы могли, буквально повертев молекулу в руках, раздвинуть ее атомы, ввести в образовавшуюся дыру ваш атом и затем закрыть отверстие, то вы бы миновали подъем, никакой затраты энергии не понадобилось бы и реакция прошла бы легче. Так вот, в клетках и впрямь существуют очень большие молекулы (куда больше, чем те, чьи изменения изображены на фиг. 3.1), которые как–то умеют расставить малые молекулы так, чтобы реакция протекала без труда. Они, эти большие сложные устройства, называются ферменты (или закваска; назвали их так потому, что обнаружили их при сбраживании сахара. Кстати, первые из реакций цикла Кребса были открыты именно при сбраживании). Реакции цикла идут только в присутствии ферментов.

Сам фермент состоит из другого вещества – белка. Молекулы ферментов велики и сложны. Все ферменты отличаются друг от друга, причем каждый предназначен для контроля некоторой определенной реакции. На фиг. 3.1 возле каждой реакции обозначены названия нужного фермента (а иногда один фермент контролирует и две реакции). Подчеркнем, что сам фермент в реакцию не вовлекается. Он не изменяется, его дело только передвинуть атом с одного места в другое. Передвинет в одной молекуле и готов уже заняться следующей. Совсем как станок на фабрике, причем должен иметься запас нужных атомов и возможность избавляться от ненужных. Возьмите, например, водород: существуют ферменты, имеющие специальные ячейки для переноса водорода в любой химической реакции. Скажем, имеются три или четыре фермента, которые понижают количество водорода; они используются во многих местах цикла. Интересно, что механизм, высвобождающий водород в одном месте, придерживает этот атом, чтобы использовать его еще где–нибудь.

Важнейшая деталь цикла, приведенного на фиг. 3.1, это превращение ГДФ в ГТФ (гуаназиндифосфат в гуаназинтрифосфат), потому что во втором веществе – ГТФ – энергии намного больше, чем в первом. Подобно тому как в некоторых ферментах имеется «ящик» для переноса атомов водорода, бывают еще особые «ящики» для переноса энергии; в них входит трифосфатная группа. В ГТФ больше энергии, чем в ГДФ, и когда цикл идет в одну сторону, создаются молекулы с избытком энергии; они могут привести в действие другие циклы, которым требуется энергия, например цикл сжатия мышцы. Мышца не сократится, если нет ГТФ. Можно поместить в воду мышечное волокно и добавить туда ГТФ, тогда волокно сократится, превращая ГТФ в ГДФ (если только присутствуют нужные ферменты). Таким образом, сокращение мышцы есть превращение ГДФ в ГТФ; накопленный в течение дня ГТФ используется в темноте для того, чтобы пустить весь цикл в обратную сторону. Как видите, ферменту все равно, в какую сторону идет реакция; если б это было не так, нарушался бы один из законов физики.

Есть и другой резон, по которому для биологии и других наук важна именно физика, – это техника эксперимента. Например, нарисованная биохимическая схема не была бы еще до сего времени известна, если бы за нею не стояли большие достижения экспериментальной физики. Дело в том, что для анализа этих невообразимо сложных систем нет лучшего средства, нежели ставить метки на атомах, участвующих в реакции. Если ввести в цикл немного углекислоты с «зеленой меткой» на ней и посмотреть, где метка окажется через 3 сек, потом через 10 сек и т. д., то можно проследить течение всей реакции. Но как сделать «зеленую метку»? При помощи различных изотопов. Напомним, что химические свойства атомов определяются числом электронов, а не массой ядра. Но в атоме углерода, к примеру, может быть либо шесть, либо семь нейтронов наряду с обязательными для углерода шестью протонами. В химическом отношении атомы С12 и С13 не отличаются, но по массе и ядерным свойствам они различны, а значит, и различимы. Используя эти изотопы, можно проследить ход реакции. Еще лучше для этого радиоактивный изотоп С14; с его помощью можно весьма точно проследить за малыми порциями вещества.

Вернемся, однако, к описанию ферментов и белков. Не все белки – ферменты, но все ферменты – белки. Существует множество белков, таких, как белки мышц, структурные белки, скажем, в хрящах, волосах, коже, не являющихся ферментами. И все–таки белки – очень характерная для жизни субстанция; во–первых, это составная часть всех ферментов, а во–вторых, составная часть многих иных живых веществ. Структура белков проста и довольно занятна. Они представляют собой ряды, или цепи, различных аминокислот. Существует два десятка разных аминокислот, и все они могут сочетаться друг с другом, образуя цепи, костяком которых являются группы СО–NH и т. п. Белок – это всего лишь цепочки, сложенные из этих 20 аминокислот. Каждая аминокислота, по всей вероятности, служит для каких–то специальных целей. В некоторых аминокислотах в определенном месте находится атом серы; два атома серы в одном и том же белке образуют связь, т. е. схватывают цепь в двух точках и составляют петлю. В других есть избыточный атом кислорода, придающий им кислотные свойства; характеристики третьих – щелочные. В некоторых бывают большие группы атомов, свисающие с одной стороны и занимающие много места. Одна из аминокислот – пролин – в действительности не амино-, а иминокислота. Эта небольшая разница приводит к тому, что когда в цепи есть пролин, то цепь перекручивается. Если бы вы захотели создать какой–то определенный белок, то вам пришлось бы дать такие указания: здесь поместите серный крюк, затем добавьте чего–нибудь, чтобы заполнить место, теперь привяжите что–нибудь, чтобы цепь перекрутилась, и т. д. Получились бы скрепленные между собой замысловатые цепочки со сложной структурой; все ферменты, по–видимому, устроены именно так. Одним из триумфов современной науки было открытие (в 1960 г.) точного пространственного расположения атомов некоторых белков; в них 56–60 аминокислот подключены друг за другом. Было установлено точное местоположение свыше 1000 атомов (даже до 2000, если считать и водород), входящих в сложную структуру двух белков (один из них – гемоглобин). А одна из печальных сторон этого открытия проявилась в том, что из этой картины ничего увидеть нельзя; мы не понимаем, почему она такая. Именно эту проблему и следует сейчас атаковать.

Есть и другая проблема в биологии: откуда ферменты «знают», кем им стать? От красноглазой мухи рождается опять красноглазая мушка; значит, вся информация о ферментах, создающих красный пигмент, должна перейти к очередной мушке. Передает эту информацию не белок, а вещество в ядре клетки, ДНК (дезоксирибонуклеиновая кислота). Это – та ключевая субстанция, которая передается от одной клетки к другой (половые клетки, например, почти целиком состоят из ДНК) и уносит с собой инструкцию, как делать ферменты. ДНК – это «калька», печатная матрица. На что похожа эта калька, как она должна действовать? Первое – она должна воспроизводить самое себя; второе – она должна быть способна давать задания белку. Что до первого, то можно было бы думать, что это происходит так же, как воспроизведение клеток: клетки подрастают и делятся пополам. Может быть, молекулы ДНК тоже растут и тоже делятся? Нет, это исключено. Ведь атомы наверняка не растут и не делятся! Видимо, для репродукции молекул нужен другой путь, похитрее.

Структура ДНК долго изучалась сперва химически (составные части), затем рентгенографически (пространственная структура). В результате пришли к следующему знаменательному открытию: молекула ДНК – это пара цепочек, навитых друг на друга. Скелет каждой цепочки, хотя и похожий на белковые цепи, но химически отличный от них, – это ряд сахарных и фосфатных групп, как показано на фиг. 3.2.



Фиг. 3.2. Схема ДНК.

Из этой схемы видно, как в цепи может храниться инструкция, ибо, разняв цепочку на две нитки, вы получаете ряд веществ BAADC…; не исключено, что этот ряд у каждого организма свой. Значит, можно думать, что каждый особый ряд ДНК содержит в себе особые указания, как производить белки.

На схеме видны пары поперечных звеньев, присоединенных к сахарным группам и стягивающих между собой две нити. Эти звенья неодинаковы; есть четыре сорта звеньев – аденин, тимин, цитозин, гуанин, обозначаемые А, В, С и D. Интересно, что не всякие звенья спариваются. Например, возможны пары АВ или CD; они размещены на двух нитях так, что «подходят друг к другу», обладают сильной энергией взаимодействия. Но С к А или В к С не подходит; если в цепи стоит С, то в другой цепи в этом месте должно быть только D. Каждой букве в одной цепи соответствует определенная буква в другой.

Как же мыслится при этом воспроизведение? Пусть цепь расщеплена на две. Как сделать другую такую же? Если в веществе клетки есть фабрика, вырабатывающая фосфат, сахар и звенья А, В, С, D (пока не привязанные к цепи), то к нашей половинке цепочки присоединятся только подходящие звенья, дополняющие BAADC, т. е. ABBCD… . При делении клетки цепь разнимается посредине на две нитки, каждая переходит в свою клетку и там набирает себе дополнение.

Наконец, последний вопрос: как порядок следования А, В, С, D в ДНК определяет расстановку аминокислот в белках? Ответа пока нет. Это основная нерешенная проблема современной биологии. Пока мы располагаем только какими–то обрывками информации об этом. В клетке имеются мельчайшие частички – микросомы; сейчас известно, что в них и вырабатываются белки. Но микросомы находятся не в ядре, не там, где находится ДНК со своими инструкциями. По–видимому, в этом есть какой–то смысл. Известно, однако, что от ДНК отрываются кусочки молекул, не такие длинные, как ДНК, несущая в себе всю информацию, а нечто вроде некрупных ее долек. Называют их РНК, но не в этом дело. Это нечто вроде уменьшенной копии ДНК. Известно, что РНК как–то переносит в микросому сообщение о том, какой сорт белка нужно изготовить. (Этот факт уже известен.) После этого в микросоме образуется белок. Это тоже известно. Но различные детали того, как аминокислоты входят в белки и как они располагаются в согласии с кодом, зашифрованным в РНК, пока не известны. Мы не умеем читать этот код. Если «написано», например, АВССА, то мы не знаем, какой белок будет приготовлен.

Право же, ни одна наука, ни одна отрасль знаний не движутся так бурно по всем направлениям вперед, как биология. Но если б мы должны были назвать то самое главное, что ведет нас сейчас все вперед и вперед в наших попытках понять явление жизни, мы обязаны были бы сказать: «все тела состоят из атомов», всё, что происходит в живых существах, может быть понято на языке движений и покачиваний атомов.

§ 4. Астрономия

В нашем стремительном обзоре всей Вселенной очередь дошла до астрономии. Астрономия – старше физики. Фактически физика и возникла из нее, когда астрономия заметила поразительную простоту движения звезд и планет; объяснение этой простоты и стало началом физики. Но самым выдающимся открытием астрономии было открытие того, что звезды состоят из таких же атомов, что и Земля. Как это было доказано?

Каждый атом испускает свет определенных частот, подобно тому как у каждого музыкального инструмента есть свое звучание – определенный набор частот, или высот, звука. Слыша одновременно несколько тонов, мы можем разделить их; но способности нашего глаза в этом отношении далеко не столь велики, он не может разделить смесь цветов на составляющие части. Однако с помощью спектроскопа становится возможным анализ частот световых волн, он позволяет видеть истинные тона атомов различных звезд. Ведь два химических элемента были даже обнаружены на звездах прежде, чем на Земле: гелий (он был открыт на Солнце, потому он так и назван) и технеций (его обнаружили на некоторых холодных звездах). Но раз звезды состоят из тех же атомов, что и Земля, то это сильно продвигает нас вперед в понимании сущности звезд. Нам хорошо известно поведение атомов при высоких температурах и невысоких плотностях, и это позволяет при помощи статистической механики анализировать поведение звездного вещества. Даже не умея воспроизводить звездное состояние на Земле, но опираясь на основные физические законы, мы часто указываем совершенно точно (а иногда почти точно), что происходит на звездах. Так физика помогает астрономии. Это может показаться странным, но распределение вещества внутри Солнца мы знаем куда лучше, чем его распределение внутри Земли. Казалось бы, что можно узнать, взглянув сквозь телескоп на пятнышко света? Однако недра звезд известны нам гораздо лучше, чем этого можно было бы ожидать, ибо мы умеем рассчитывать, что произойдет с атомами звезд при многих обстоятельствах.

Одно из наиболее впечатляющих открытий астрономии – это открытие источника энергии звезд, поддерживающего их горение. Один из тех, кто открыл это, отправился на прогулку с девушкой как раз в ночь после того, как понял, что на звездах происходит ядерная реакция, что в этом причина их свечения. Она сказала: «Взгляни, как чудесно сияют звезды!» А он ответил: «Да. Чудесно. А ведь сегодня я – единственный человек в мире, который знает, почему они сияют!» Она только рассмеялась. На нее не произвело впечатления, что он – единственный человек, понимающий, почему звезды светят. Что ж, как это ни печально, быть одиноким и непонятым – это в порядке вещей.

Так вот, Солнце получает энергию от ядерного «сгорания» водорода, который переходит при этом в гелий. Из водорода в глубинах звезд вырабатываются далее другие химические элементы. Вещество, из которого сделаны мы, было когда–то «испечено» в звезде и выплеснуто наружу. Но откуда это известно? А вот откуда. Содержание различных изотопов в веществе С12, С13 и т. д. – никогда не меняется при химических превращениях, ибо для обоих изотопов С химические реакции одинаковы. Эти пропорции есть результат лишь ядерных реакций. Изучая пропорцию изотопов в остывшей, мертвой золе, каковой являемся мы, можно догадаться, на что была похожа печь, в которой сформировалось наше вещество. Она была похожа на звезды, и поэтому очень вероятно, что элементы «сделаны» в звездах и выброшены оттуда при взрывах, называемых нами Новыми и Сверхновыми звездами. Астрономия столь близка к физике, что еще не один раз в этом курсе мы обратимся к ней.

§ 5. Геология

Перейдем теперь к так называемым наукам о Земле, или геологии. К ним относятся прежде всего метеорология, или наука о погоде. Метеорологическая аппаратура – это физические приборы, так что метеорология снабжена приборами благодаря развитию экспериментальной физики (мы уже об этом говорили). Иное дело теория метеорологии, она никогда не была удовлетворительно разработана никем из физиков. «Странно, – скажете вы, – ведь это всего лишь воздух, разве мы не знаем уравнений движения воздуха?» Да, знаем. «Почему же, зная, в каком состоянии воздух сегодня, мы не можем предсказать его состояние на завтра?» Во–первых, мы не знаем, каково на самом деле сегодня состояние воздуха, ибо он то и дело где–то завихряется и струится. Воздух очень чувствителен к любым изменениям и попросту неустойчив. Чтобы понять, о какой неустойчивости я говорю, взгляните, как вода спокойно течет над плотиной и вдруг, падая, превращается во множество пузырьков и капель. Вы знаете состояние воды в момент, когда она переваливает через плотину, – она совершенно спокойна; откуда же берутся капли в момент падения? От чего зависит, на какие струи разобьется поток, где они возникнут, куда упадут? Все это неизвестно, потому что течение воды неустойчиво. Точно так же даже спокойный поток воздуха, проходя между гор, прихотливо распадается на отдельные вихри. Во многих областях науки мы сталкиваемся с тем, что носит название турбулентное течение, не поддающееся пока нашему анализу. Так что давайте лучше от темы «погода» перейдем побыстрей к геологии!

Главный вопрос геологии заключается в том, что сделало Землю такой, какая она есть? Самые очевидные из таких процессов происходят у нас на глазах: реки подмывают берега, поля заносит пылью и т. д. Это понять довольно легко, но ведь кроме эрозии, помимо разрушения должно что–то и обратное происходить. В среднем горы сейчас не ниже, чем в прошлом. Следовательно, должен происходить и процесс горообразования.

Изучая геологию, вы убедитесь, что действительно происходит и горообразование, и вулканизм, но никто их не понимает; не понимает того, что составляет половину геологии. Действительно, природа вулканов не понята. Отчего бывают землетрясения, тоже в конечном счете не понято. Понимают, конечно, что если что–то с чем–то столкнется, то что–то треснет, что–то сдвинется – все это хорошо. Но что толкнуло, почему толкнуло? Существует теория, что внутри Земли имеются течения – происходит циркуляция из–за различия температур снаружи и внутри – и они в своем движении слегка толкают поверхность Земли. А если где–то встречаются два противных течения, то там должно накапливаться вещество, появляться горные хребты, они окажутся в сильно напряженном состоянии, возникнут вулканы, произойдут землетрясения.

Что можно сказать о недрах Земли? Хорошо известна скорость волн землетрясений в Земле и распределение плотности внутри нашей планеты. Но физики не смогли создать хорошей теории плотности вещества при давлениях, ожидаемых в центре Земли. Иными словами, мы не представляем себе слишком хорошо свойств вещества в таких условиях. Со своей планетой мы справляемся куда хуже, нежели с состоянием вещества в звездах. Необходимый для этого математический аппарат не разработан, он, по–видимому, чрезвычайно сложен; не исключено, однако, что найдется кто–то, кто поймет важность этой проблемы и разработает ее. Другое дело, что, даже вычислив плотность, мы не сможем представить себе циркулирующие течения или разобраться в свойствах горных пород при сверхвысоких давлениях. Мы не умеем предсказывать, насколько быстро эти породы «поддадутся» давлению; только опыт ответит на эти вопросы.

§ 6. Психология

Рассмотрим, наконец, еще одну науку – психологию. Сразу же уместно заметить, что психоанализ – это не наука; в лучшем случае это медицинский процесс, а скорее всего – знахарство. В психоанализе существует теория происхождения болезней – разные там «духи» и прочее. Знахарь тоже имеет теорию, по которой болезнь, скажем малярию, вызывает дух, витающий в воздухе; ее не вылечишь, если потрясти змеей над головой больного, а вот хинин помогает. Итак, если вы заболеете, советую вам отправиться к знахарю, потому что он лучше всех в племени разбирается в болезнях; однако его знание – это не наука. Психоанализ не был достаточно проверен экспериментально, и невозможно привести перечень случаев, когда он помогает, а когда не помогает и т. д.

Другие ветви психологии, а в нее входит, например, физиология ощущения (что происходит в глазе, а что в мозге), пожалуй, не столь интересны. Но в них были достигнуты хотя и малые, но вполне реальные успехи. Вот одна из интереснейших технических задач (хотите называйте ее психологией, хотите – нет). Центральная проблема в изучении мышления, или, если угодно, нервной системы, такова: пусть животное чему–либо научилось, пусть оно умеет делать что–то, чего прежде не умело; значит, клетки его мозга, если они состоят из атомов, изменились. В чем же состоит это изменение? Мы запечатлели что–то в своей памяти. Где это? Что там можно увидеть теперь? Этого мы не знаем. Мы запомнили какое–то число. Что это значит? Что изменилось в нервной системе? Неизвестно. Это очень важная проблема, совершенно притом нерешенная. Даже если допустить, что в нас имеется какой–то механизм памяти, то все равно мозг – это столь невообразимая масса пересекающихся проводов и нервов, что, по всей вероятности, прямой анализ невозможен. Аналог этого – вычислительные машины и их элементы; в них тоже множество проводов, есть и элементы, похожие на синапсы (нервные связи). Жаль, что у нас нет времени разобрать интересный вопрос об отношении между мыслью и вычислительными машинами. Следует понимать все же, что этот вопрос очень мало скажет нам о реальной сложности повседневного поведения человека. Люди столь различны! И понадобится немало времени, чтоб в этом разобраться. Следует начать издалека. Если бы даже нам удалось представить, как действует собака, то и этого оказалось бы слишком мало. Собаку понять куда легче, но и то никто не может объяснить, как она действует.

§ 7. С чего все пошло?

Чтобы физика могла быть полезной другим наукам в отношении теории, а не только своими приборами и изобретениями, эти науки должны снабдить физика описанием их объекта на физическом языке. Если биолог спросит: «Почему лягушка прыгает?», то физик не сможет ответить. Но если он расскажет, что такое лягушка, что в ней столько–то молекул, что вот в этом месте у нее нервы и т. д., то это уже совсем иное дело. Если геолог более или менее толково объяснит нам, что такое Земля, а астроном – что такое звезды, тогда можно попробовать в этом разобраться. Чтобы был какой–то толк от физической теории, нужно знать, где расположены атомы. Чтобы понять химию, мы должны точно знать, из каких атомов состоят интересующие нас вещества, иначе мы ничего не проанализируем. Конечно, это лишь одно из ограничений.

Существует и другой тип задач в соседних науках, который в физике отсутствует. Назовем его, не имея лучшего термина, вопросом истории. С чего все пошло? Как все стало таким, как оно есть? Если, например, все в биологии будет нами понято, возникнет естественный вопрос: как появились все существа на Земле? Этим занимается теория эволюции – важная часть биологии. В геологии нам хочется знать не только, как образуются горы, но и как вначале возникла сама Земля, солнечная система и т. д. Это, естественно, приводит нас к желанию узнать, из какого рода материи складывалась тогда Вселенная. Как развились звезды? Каковы были начальные условия? Это – проблема астрономической истории. Сейчас многое прояснилось в происхождении звезд, элементов, из которых мы состоим, и даже чуточку стало ясней происхождение самой Вселенной.

В настоящее время физика не изучает вопросы истории. Мы не задаем вопрос: «Вот законы физики, как они возникли?» Мы не считаем в настоящее время, что законы физики со временем как–то изменяются, что они прежде были иными, нежели ныне. Конечно, это не исключено, и если выяснится, что это и впрямь так, то исторические вопросы физики переплетутся с остальной историей Вселенной, и тогда физик будет обсуждать те же проблемы, что и астрономы, геологи и биологи.

Наконец, существует физическая проблема, общая многим паукам, очень старая к тому же, но до сего времени не решенная. Это не проблема поиска новых элементарных частиц, нет, это другой вопрос – вопрос давно, свыше ста лет назад, отставленный наукой в сторону. Ни один физик еще не смог математически безупречно проанализировать его, несмотря на его важность для сопредельных наук. Это – анализ циркуляции, или вихревой жидкости. Если проследить эволюцию звезды, то рано или поздно мы подойдем к такому моменту, когда в звезде начинается конвекция; и с этого момента мы уже не знаем, что будет дальше. Через несколько миллионов лет происходит взрыв звезды, но причина этого для нас остается загадкой. Мы не умеем анализировать погоду. Мы не знаем картины движений, которые должны происходить внутри Земли. В простейшей форме задача такова: пропустим через очень длинную трубку на большой скорости воду. Спрашивается: какое нужно давление, чтобы прогнать сквозь трубку данное количество воды? И никто, основываясь только на первичных законах и на свойствах самой воды, не умеет ответить на этот вопрос. Если вода течет неторопливо или когда сочится вязкая жижа вроде меда, то мы прекрасно все умеем. Ответ вы можете найти, например, в любом вашем учебнике. А вот с настоящей, мокрой водой, брызжущей из шланга, справиться мы не в силах. Это – центральная проблема, которую в один прекрасный день нам понадобится решить, а мы это не умеем.

Поэт сказал однажды: «Весь мир в бокале вина». Мы, вероятно, никогда не поймем, какой смысл он в это вкладывал, ибо поэты пишут не для того, чтобы быть понятыми. Но бесспорно, что, внимательно взглянув в бокал вина, мы поистине откроем целый мир. В нем и физические явления (искрящаяся жидкость, испарение, меняющееся в зависимости от погоды и вашего дыхания, блеск стекла) и атомы (о которых нам говорит уже наше воображение). Стекло – это очищенная горная порода; в его составе кроются секреты возраста Вселенной и развития звезд. А из какого удивительного набора реактивов состоит это вино! Как они возникли? Там есть закваска, ферменты, вытяжки и разные другие продукты. Ведь в вине скрывается большое обобщение: вся жизнь есть брожение. Изучая химию вина, нельзя не открыть, как это и сделал Луи Пастер, причины многих болезней. Сколько жизни в этом кларете, если он навязывает нашему сознанию свой дух, если мы должны быть столь осторожны с ним! Наш ограниченный ум для удобства делит этот бокал вина, этот мир на части: физику, биологию, геологию, астрономию, психологию и т. д., но ведь природа на самом деле никакого деления не знает! Давайте же и мы сольем это воедино, не забывая все же, что мы увидели. Пусть этот бокал вина доставит напоследок еще одно наслаждение: выпить его и обо всем позабыть!

* Как лихо я управился с этим! Как много скрыто за каждой фразой этого короткого рассказа. «Звезды и Земля сделаны из одинаковых атомов». Обычно мне одной такой темы хватает на целую лекцию. Поэты утверждают, что наука лишает звезды красоты, для нее, мол, звезды – просто газовые шары. Ничего не «просто». Я тоже любуюсь звездами и чувствую их красоту. Но кто из нас видит больше? Обширность небес превосходит мое воображение… Затерянный в этой карусели, мой маленький глаз способен видеть свет, которому миллион лет. Безбрежное зрелище Вселенной… и я сам – ее часть… Быть может, вещество моего тела извергнуто какой–нибудь забытой звездой, такой же, как вон та, чей взрыв я вижу сейчас. Или я смотрю на звезды гигантским оком Паломарского телескопа, вижу, как они устремляются во все стороны от той первоначальной точки, где, быть может, они некогда обитали бок о бок. Что это за картина и каков ее смысл? И зачем все это? Таинству Вселенной не причинит ущерба наше проникновение в какие–то ее секреты, ибо правда более поразительна, нежели то, что было нарисовано воображением художников прошлого! Почему же нынешние поэты не говорят об этом? Что за народ эти лирики, если они способны говорить о Юпитере только как о человеке, и молчат, если это огромный вращающийся шар из метана и аммиака?

Глава 4 СОХРАНЕНИЕ ЭНЕРГИИ

§ 1. Что такое энергия?

С этой главы, покончив с общим описанием природы вещей, мы начнем подробное изучение различных физических вопросов. Чтобы показать характер идей и тип рассуждений, которые могут применяться в теоретической физике, мы разберем один из основных законов физики – сохранение энергии.

Существует факт, или, если угодно, закон, управляющий всеми явлениями природы, всем, что было известно до сих пор. Исключений из этого закона не существует; насколько мы знаем, он абсолютно точен. Название его – сохранение энергии. Он утверждает, что существует определенная величина, называемая энергией, которая не меняется ни при каких превращениях, происходящих в природе. Само это утверждение весьма и весьма отвлеченно; это по существу математический принцип, утверждающий, что существует некоторая численная величина, которая не изменяется ни при каких обстоятельствах. Это отнюдь не описание механизма явления или чего–то конкретного, просто–напросто отмечается то странное обстоятельство, что можно подсчитать какое–то число и затем спокойно следить, как природа будет выкидывать любые свои трюки, а потом опять подсчитать это число – и оно останется прежним. (Ну, все равно, как слон на черном шахматном поле: как бы ни разворачивались события на доске, какие бы ходы ни делались, слон все равно окажется на черном поле. Наш закон как раз такого типа.) И поскольку утверждение это отвлеченно, то мы выявим его смысл на некоторой аналогии.

Познакомимся с мальчиком, этаким Монтигомо Ястребиный Коготь; у него есть большие кубики, которые даже он не может ни сломать, ни разделить на части. Все они одинаковы. Пускай их у него 28 штук. Мама оставляет его утром дома наедине с этими кубиками. Каждый вечер она подсчитывает, сколько у него кубиков, – она немного любопытна! – и открывает поразительную закономерность: что бы ее сынишка ни вытворял с кубиками, их все равно оказывается 28! Так это тянется довольно долго, и вдруг в один прекрасный день она насчитывает только 27 штук. После недолгих поисков кубик обнаруживают под ковром: ей приходится все обыскать, чтобы убедиться в неизменности числа кубиков. В другой раз кубиков оказывается 26. Снова тщательное исследование показывает, что окно отворено; взглянув вниз, она видит два кубика в траве. В третий раз подсчет дает 30 кубиков! Это приводит маму в полное замешательство, но потом она вспоминает, что в гости приходил соседский Кожаный Чулок, видимо, он захватил с собой свои кубики и позабыл их здесь. Она убирает лишние кубики, затворяет плотно окно, не пускает больше гостей в дом, и тогда все опять идет как следует, пока однажды подсчет не дает 25 кубиков… Правда, в комнате имеется ящик для игрушек, маме хочется и в него заглянуть, но мальчик кричит: «Не открывай мой ящик!» и начинает рёв; мама к ящику не допускается. Как же быть? Но мама любопытна и хитра, она придумывает выход! Она знает, что кубик весит 500 г; она взвешивает ящик, когда все 28 кубиков на полу, он весит 1 кг. Когда в следующий раз она проверяет количество кубиков, она опять взвешивает ящик, вычитает 1 кг и делит на 500 г. Она открывает, что



Но опять возникают отклонения и от этой формулы. Снова в результате кропотливых изысканий выясняется, что при этом уровень воды в стиральной машине почему–то изменился. Дитя, оказывается, швыряет кубики в воду, а мать не может их увидеть – вода мыльная; но она может узнать, сколько в воде кубиков, добавив в формулу новый член. Первоначальный уровень воды 40 см, а каждый кубик подымает воду на 1/3см, так что новая формула такова:



Мир представлений мамы постепенно расширяется, она накопит весь ряд членов, позволяющих рассчитывать, сколько кубиков находится там, куда она заглянуть не может. В итоге она открывает сложную формулу для количества, которое должно быть рассчитано и которое всегда остается тем же самым, что бы ее дитя ни натворило.

В чем же аналогия между этим примером и сохранением энергии? Самое существенное, от чего надлежит отвлечься в этой картинке, – это что кубиков не существует. Отбросьте в выражениях (4.1) и (4.2) первые члены и вы обнаружите, что считаете более или менее отвлеченные количества. Аналогия же в следующем. Во–первых, при расчете энергии временами часть ее уходит из системы, временами же какая–то энергия появляется. Чтобы проверить сохранение энергии, мы должны быть уверены, что не забыли учесть ее убыль или прибыль. Во–вторых, энергия имеет множество разных форм и для каждой из них есть своя формула: энергия тяготения, кинетическая энергия, тепловая энергия, упругая энергия, электроэнергия, химическая энергия, энергия излучения, ядерная энергия, энергия массы. Когда мы объединим формулы для вклада каждой из них, то их сумма не будет меняться, если не считать убыли энергии и ее притока.

Важно понимать, что физике сегодняшнего дня неизвестно, что такое энергия. Мы не считаем, что энергия передается в виде маленьких пилюль. Ничего подобного. Просто имеются формулы для расчета определенных численных величин, сложив которые, мы получаем число 28 – всегда одно и то же число. Это нечто отвлеченное, ничего не говорящее нам ни о механизме, ни о причинах появления в формуле различных членов.

§ 2. Потенциальная энергия тяготения

Сохранение энергии можно понять, только если имеются формулы для всех ее видов. Я сейчас рассмотрю формулу для энергии тяготения близ земной поверхности; я хочу вывести ее, но не так, как она впервые исторически была получена, а при помощи специально придуманной для этой лекции нити рассуждений. Я хочу вам показать тот достопримечательный факт, что нескольких наблюдений и строгого размышления достаточно, чтобы узнать о природе очень и очень многое. Вы увидите, в чем состоит работа физика–теоретика. Вывод подсказан блестящими рассуждениями Карно о к. п. д. тепловых машин.

Рассмотрим грузоподъемные машины, способные подымать один груз, опуская при этом другой. Предположим еще, что вечное движение этих машин невозможно. (Именно недопустимость вечного движения и есть общая формулировка закона сохранения энергии.) Определяя вечное движение, нужно быть очень осторожным. Сделаем это сначала для грузоподъемных машин. Если мы подняли и опустили какие–то грузы, восстановили прежнее состояние машины и после этого обнаружили, что в итоге груз поднят, то мы получили вечный двигатель: поднятый груз может привести в движение что–то другое. Здесь существенно, чтобы машина, поднявшая груз, вернулась в первоначальное положение и чтобы она ни от чего не зависела (чтобы не получала от внешнего источника энергию для подъема груза, словом, чтобы не приходил в гости Кожаный Чулок со своими кубиками).

Очень простая грузоподъемная машина показана на фиг. 4.1.



Фиг. 4.1. Простая грузоподъемная машина.

Она подымает тройной вес. На одну чашку весов помещают три единицы веса, на другую – одну. Правда, чтобы она и впрямь заработала, с левой чашки необходимо снять хоть малюсенький грузик. И наоборот, чтобы поднять единичный груз, опуская тройной, тоже нужно немного сплутовать и убрать с правой чашки часть груза. Мы понимаем, что в настоящей подъемной машине надо создать небольшую перегрузку на одну сторону, чтобы поднять другую. Но пока махнем на это рукой. Идеальные машины, хотя их и нет на самом деле, не нуждаются в перевесе. Машины, которыми мы фактически пользуемся, можно считать в некотором смысле почти обратимыми, т. е. если они поднимают тройной вес при помощи единичного, то они могут поднять также почти единичный вес, опуская тройной.

Представим, что имеются два класса машин – необратимые (сюда входят все реальные машины) и обратимые, которых на самом деле не существует; как бы тщательно ни изготавливать подшипники, рычаги и т. д., таких машин все равно не построишь. Но мы предположим все же, что обратимая машина существует и способна, опустив единичный груз (килограмм или грамм – все равно) на единичную длину, поднять в то же время тройной груз. Назовем эту обратимую машину машиной А. Положим, что данная обратимая машина подымает тройной груз на высоту X. Затем предположим, что имеется другая машина В, не обязательно обратимая, которая тоже опускает единичный вес на единицу длины, но поднимает тройной вес на высоту Y. Теперь можно доказать, что Y не больше X, т. е. что нельзя соорудить машину, которая смогла бы поднять груз выше, чем обратимая. Почему? Посмотрите. Пусть Y выше X.

Мы берем единичный вес и опускаем его на единицу длины машиной В, тем самым поднимая тройной груз на высоту Y. Затем мы можем опустить груз с высоты Y до X, получив свободную энергию, и включить обратимую машину А в обратную сторону, чтобы опустить тройной груз на X и поднять единичный вес на единичную высоту. Единичный вес очутится там, где он был прежде, и обе машины окажутся в состоянии начать работу сызнова! Итак, если Y больше X, то возникает вечный двигатель, а мы предположили, что такого не бывает. Мы приходим к выводу, что Y не выше X, т. е. из всех машин, которые можно соорудить, обратимая – наилучшая.

Легко понять также, что все обратимые машины должны поднимать груз на одну и ту же высоту. Положим, что машина В также обратима. То, что Y не больше X, остается, конечно, верным, но мы можем пустить машину в обратную сторону, повторить те же рассуждения и получить, что X не больше Y. Это очень знаменательное наблюдение, ибо оно позволяет узнать, на какую высоту разные машины могут поднимать грузы, не заглядывая в их внутреннее устройство. Если кто–нибудь придумал невероятно запутанную систему рычагов для подъема тройного веса на какую–то высоту за счет опускания единичного веса на единицу высоты и если мы сравним эту машину с простым обратимым рычагом, способным проделать то же самое, то первая машина не поднимет вес выше второй (скорее наоборот). А если его машина обратима, то мы знаем точно, на какую высоту она будет поднимать грузы.

Вывод: каждая обратимая машина, как бы она ни действовала, опуская 1 кг на 1 м, всегда подымает 3 кг на одну и ту же высоту X. Ясно, что мы доказали очень полезный всеобщий закон. Но возникает вопрос: чему равно X?

Пусть у нас есть обратимая машина, способная поднимать 3 кг за счет 1 кг на высоту X. Поместим три шара на стеллаж (как на фиг. 4.2).



Фиг. 4.2. Обратимая машина. а – начальное положение; б – загрузка шаров; в –. 1 кг поднимает 3 кг на высоту X; г –разгрузка шаров; д – восстановление; е – конечное положение.

Четвертый лежит на подставке в одном метре от пола. Машина может поднять три шара, опустив один шар на 1 м. Устроим подвижную платформу с тремя полками высотой X, и пусть высота полок стеллажа тоже будет X (фиг. 4.2,а). Перекатим сперва шары со стеллажа на полки платформы (фиг. 4.2,6); предположим, что для этого энергии не понадобится, потому что полки и стеллаж находятся на одной высоте. Затем включим обратимую машину: она скатит одиночный шар на пол и подымет платформу на высоту X (фиг. 4.2,в). Но мы сконструировали платформу столь остроумно, что шары опять оказались в точности на уровне полок стеллажа. Разгрузим же шары с платформы на стеллаж (фиг. 4.2,г). После разгрузки машина вернется в первоначальное положение. Теперь уже три шара лежат на трех верхних полках стеллажа, а четвертый шар — на полу. Но смотрите, какая странная вещь: по существу два шара мы не поднимали вовсе, ведь на полках 2 и 3 шары как лежали вначале, так лежат и теперь. В итоге поднялся только один шар, но зато на высоту 3Х. Если бы высота ЗХ оказалась больше 1 м, то можно было бы опустить шар, чтобы вернуть машину к начальным условиям (фиг. 4.2,е) и начать работу сначала. Значит, высота 3Х не может быть больше 1 м, ибо начнется вечное движение. Точно так же можно доказать, что 1 м не может быть больше 3Х: машина обратима, пустим ее назад и докажем. Итак, 3Х ни больше, ни меньше 1 м. Мы открыли при помощи одних только рассуждений закон: Х=1/3м. Обобщить его легко; 1 кг падает при работе обратимой машины с некоторой высоты; тогда машина способна поднять р кг на 1/р высоты. Если, другими словами, 3 кг умножить на высоту их подъема (X), то это равно 1 кг, умноженному на высоту его падения (1 м). Помножив все грузы в машине на высоту, на которой они лежат, дайте машине поработать и опять помножьте все веса на их высоты подъема; в итоге должно выйти то же самое. (Мы перешли от случая, когда двигался только один груз, к случаю, когда за счет опускания одного груза поднимается несколько грузов. Но это, надеюсь, понятно?) Назовем сумму весов, умноженных на высоту, потенциальной энергией тяготения, т. е. энергией, которой обладает тело вследствие своего положения в пространстве по отношению к земле. Формула для энергии тяготения, пока тело не слишком далеко от земли (вес при подъеме ослабляется), такова:

(Потенциальная энергия тяготениях для одного тела) = (Вес) x (Высота). (4.3)

Не правда ли, очень красивое рассуждение? Вопрос только в том, справедливо ли оно. (Ведь, в конце концов, природа не обязана следовать нашим рассуждениям.) Например, не исключено, что в действительности вечное движение возможно. Или другие предположения ошибочны. Или мы просмотрели что–то в своих рассуждениях. Поэтому их непременно нужно проверить. И вот – справедливость их подтверждает опыт.

Потенциальная энергия – это общее название для энергии, связанной с расположением по отношению к чему–либо. В данном частном случае это – потенциальная энергия тяготения. Если же производится работа против электрических сил, а не сил тяготения, если мы «поднимаем» заряды «над» другими зарядами с помощью многочисленных рычагов, тогда запас энергии именуется электрической потенциальной анергией. Общий принцип состоит в том, что изменения энергии равны силе, умноженной на то расстояние, на котором она действует:



По мере чтения курса мы еще не раз будем возвращаться к другим видам потенциальной энергии.