Настройки шрифта

| |

Фон

| | | |

 

Глава 1

АМПЛИТУДЫ ВЕРОЯТНОСТИ

§ 1.Законы композиции амплитуд

§ 2.Картина интерференции от двух щелей

§ З. Рассеяние на кристалле

§ 4. Тождественные частицы

Повторить: гл. 37 (вып. 3) «Кван­товое поведение» ; гл. 38 (вып. 3) « Соотношение между волновой и корпускулярной точками зрения»

§ 1. Законы композиции амплитуд

Когда Шредингер впервые открыл правиль­ные законы квантовой механики, он написал уравнение, которое описывало амплитуду ве­роятности обнаружения частицы в различ­ных местах. Это уравнение было очень похоже на уравнения, которые были уже изве­стны классическим физикам, они ими пользо­вались, чтобы описать движение воздуха в звуковой волне, распространение света и т. д. Так что в начале развития квантовой механики большую часть времени люди занимались ре­шением этого уравнения. Но в то же время началось (в частности, благодаря Борну и Дираку) понимание тех фундаментально новых идей, которые лежали в основе кванто­вой механики. По мере дальнейшего ее разви­тия выяснилось, что в ней есть много такого, что прямо в уравнении Шредингера не содер­жится,— таких вещей, как спин электрона и различные релятивистские явления. Все курсы квантовой механики по традиции начинают с того же самого, повторяя путь, пройденный в историческом развитии предмета. Сперва долго изучают классическую механику, чтобы потом понять, как решается уравнение Шредингера. Затем столь же долго получают различные решения. И лишь после деталь­ного изучения этого уравнения переходят к «высшим» вопросам, таким, как спин электрона.

Сначала мы тоже считали, что лучше всего закончить эти лекции, показав, как решаются уравнения классической физики в различных сложных случаях, таких, как опи­сание звуковых волн в замкнутом пространстве, типы элек­тромагнитного излучения в цилиндрических полостях и т. д. Таков был первоначальный план этого курса. Но затем мы решили отказаться от этого плана и вместо этого дать введение в квантовую механику. Мы пришли к заключе­нию, что то, что обычно именуют «высшими» разделами квантовой механики, на самом деле совсем простая вещь. Нужная для этого математика чрезвычайно проста — требуются лишь несложные алгебраические операции, никаких дифферен­циальных уравнений не нужно (или в крайнем случае нужны самые простые). Проблема только в том, чтобы перепрыгнуть через одно препятствие: усвоить, что мы больше не имеем права детально описывать поведение частиц в пространстве. И вот этим-то мы и собираемся заняться: рассказать вам о том, что обычно называют «высшими» разделами квантовой механики. Но уверяю вас, это самые что ни на есть простые (в полном смысле этого слова), но в то же время самые фундаментальные ее части. Честно говоря, это педагогический эксперимент, и, насколько нам известно, он никогда раньше не ставился.

Конечно, здесь есть своя трудность: квантовомеханическое поведение вещей чрезвычайно странно. Никто не может пола­гаться на то, что его ежедневный опыт даст ему интуитивное, грубое представление о том, что должно произойти. Так что этот предмет можно представить двояким образом: можно либо довольно грубо , описать, что происходит — сообщать более или менее подробно, что случится, но не формулировать точных законов, либо же можно приводить и точные законы в их абстрактном виде. Но тогда эта абстракция приведет к тому, что вы не будете знать, к чему физически она относится. Этот способ не годится, потому что он совершенно отвлеченный, а от первого способа будет оставаться неприятный осадок, потому что никогда не будет точно известно, что верно, а что нет. И мы не знаем, как эту трудность обойти. С этой проблемой мы уже сталкивались раньше [гл. 37 и 38 (вып. 3)1. В гл. 37 изложение относительно строгое, а в гл. 38 дано лишь грубое описание раз­личных явлений. Теперь мы попытаемся найти золотую сере­дину.

Мы начнем эту главу с некоторых общих квантовомеханических представлений. Кое-какие из этих утверждений будут со­вершенно точными, иные же точны лишь частично. При изложении нам будет трудно отмечать, которые из них какие, но к тому времени, когда вы дочитаете книжку до конца, вы уже сами будете понимать, оглядываясь назад, какие части устояли, а какие оказались только грубым объяснением. Главы, которые последуют за этой, не будут столь неточными. Одна из причин, почему мы пытаемся в последующих главах быть как можно более точными, состоит в том, что таким образом мы сможем продемонстрировать одно из самых прекрасных свойств кван­товой механики — как много в ней удается вывести из столь малого.

Мы опять начинаем с выяснения свойств суперпозиции, наложения, амплитуд вероятностей. Для примера мы сошлем­ся на опыт, описанный в гл. 37 (вып. 3) и еще раз показанный здесь на фиг. 1.1.



Фиг. 1.1. Интерференционный опыт с электронами.

Имеется источник частиц s, скажем электронов; дальше стоит стенка, в которой имеются две щели; за стенкой помещен детектор; он находится где-то в точке х. Мы спраши­ваем: какова вероятность того, что в точке х будет обнаружена частица? Наш первый общий принцип квантовой механики заключается в том, что вероятность того, что частица достигнет точки х, выйдя из источника s, может быть численно представле­на квадратом модуля комплексного числа, называемого ампли­тудой вероятности, в нашем случае — «амплитудой того, что частица из s попадет в х». К этим амплитудам мы будем прибе­гать так часто, что удобно будет использовать сокращенное обозначение, изобретенное Дираком и повсеместно применяемое в квантовой механике, чтобы отображать это понятие. Мы запишем амплитуду вероятности так:

<Частица попадает в х|Частица покидает s> (1.1)

Иными словами, две скобки <> — это знак, эквивалентный словам «амплитуда (вероятности) того, что»; выражение справа от вертикальной черточки всегда задает начальное условие, а то, что слева,— конечное условие. А иногда будет удобно еще сильнее сокращать, описывая начальные и конечные условия одной буквой. Например, амплитуду (1.1) можно при случав записать и так:

<x|s>. (1.2)

Надо подчеркнуть, что подобная амплитуда — это, конечно, всего-навсего число — комплексное число.

В гл. 37 (вып. 3) мы уже видели, что, когда частица может достичь детектора двумя путями, итоговая вероятность не есть сумма двух вероятностей, а должна быть записана в виде квад­рата модуля суммы двух амплитуд. Мы обнаружили, что ве­роятность того, что электрон достигнет детектора при обеих открытых амбразурах, есть

(1.3)

Теперь мы этот результат собираемся записать в наших новых обозначениях. Сначала сформулируем наш второй общий принцип квантовой механики. Когда частица может достичь данного состояния двумя возможными путями, полная амплиту­да процесса есть сумма амплитуд для этих двух путей, рас­сматриваемых порознь. В наших новых обозначениях мы на­пишем



При этом мы предполагаем, что щели 1 и 2 достаточно малы, так что, когда мы говорим, что электрон прошел сквозь щель, не встает вопрос, через какую часть щели он прошел. Конечно, можно разбить каждую щель на участки с конечной амплитудой того, что электрон прошел через верх щели или через низ и т. д. Мы допустим, что щель достаточно мала, так что нам не надо думать об этой детали. Это одна из тех неточностей, о которых мы говорили; суть дела можно уточнить, но мы покамест не будем этого делать.

Теперь мы хотим подробнее расписать, что можно сказать об амплитуде процесса, в котором электрон достигает детектора в точке х через щель 1. Это можно сделать, применив третий общий принцип. Когда частица идет каким-то определенным данным путем, то амплитуда для этого пути может быть записана в виде произведения амплитуды того, что будет пройдена часть пути, на амплитуду того, что и остаток пути будет пройден.

Для установки, показанной на фиг. 1.1, амплитуда перехода от s к х сквозь щель 1 равна амплитуде перехода от s к 1, умно­женной на амплитуду перехода от 1 к х:



Опять-таки, это утверждение не совсем точно. Нужно добавить еще один множитель — амплитуду того, что электрон пройдет щель в точке 1; но пока это у нас просто щель, и мы положим упомянутый множитель равным единице.

Заметьте, что уравнение (1.5) кажется написанным задом наперед. Его надо читать справа налево: электрон переходит от s к 1 и затем от 1 к х. В итоге если события происходят друг за другом, т. е. если вы способны проанализировать один из путей частицы, говоря, что она сперва делает то-то, затем то-то, потом то-то, то итоговая амплитуда для этого пути вы­числяется последовательным умножением на амплитуду каж­дого последующего события. Пользуясь этим законом, мы мо­жем уравнение (1.4) переписать так:



А теперь мы покажем, что, используя одни только эти прин­ципы, уже можно решать и более трудные задачи, наподобие показанной на фиг. 1.2.



Фиг. 1.2. Интерференционный опыт посложнее.

Тут изображены две стенки: одна с двумя щелями 1 и 2, другая с тремя — а, b и с. За второй стенкой в точке х стоит детектор, и мы хотим узнать амплитуду того, что частица достигнет х. Один способ решения состоит в расчете суперпозиции, или интерференции, волн, проходящих сквозь щели; но можно сделать и иначе, сказав, что имеется шесть возможных путей, и накладывая друг на друга их амплитуды. Электрон может пройти через щель 1, затем через щель а и потом в х, или же он мог бы пройти сквозь щель 1, затем сквозь щель b и затем в x; и т. д. Согласно нашему второму принципу, амплитуды взаимоисключающих путей складываются, так что мы должны записать амплитуду перехода от s к х в виде суммы шести отдельных амплитуд. С другой стороны, согласно третье­му принципу, каждую из них можно записать в виде произведе­ния трех амплитуд. Например, одна из них — это амплитуда перехода от s к 1, умноженная на амплитуду перехода от 1 к а и на амплитуду перехода от а к я. Используя наше сокращенное обозначение, полную амплитуду перехода от s к х можно запи­сать в виде



Можно сэкономить место, использовав знак суммы:



Чтобы, пользуясь этим методом, проводить какие-то вы­числения, надо, естественно, знать амплитуду перехода из од­ного места в другое. Я приведу пример типичной амплитуды. В ней не учтены некоторые детали, такие, как поляризация све­та или спин электрона, а в остальном она абсолютно точна. С ее помощью вы сможете решать задачи, куда входят различные сочетания щелей. Предположим, что частица с определенной энергией переходит в пустом пространстве из положения r1 в положение r2. Иными словами, это свободная частица: на нее не действуют никакие силы. Отбрасывая численный множитель впереди, амплитуду перехода от r1 к r2 можно записать так:



где r12=r2-r1 а р — импульс частицы, связанный с ее энергией Е релятивистским уравнением



или нерелятивистским уравнением

p2/2m = Кинетическая энергия.

Уравнение (1.7) в итоге утверждает, что у частицы есть волно­вые свойства, что амплитуда распространяется как волна с волновым числом, равным импульсу, деленному на

В общем случае в амплитуду и в соответствующую вероят­ность входит также и время. В большинстве наших первона­чальных рассуждений будет предполагаться, что источник испускает частицы с данной энергией беспрерывно, так что о времени не нужно будет думать. Но, вообще-то говоря, мы вправе заинтересоваться и другими вопросами. Допустим, что частица испущена в некотором месте Р в некоторый момент и вы хотите знать амплитуду того, что она окажется в каком-то месте, скажем г, в более позднее время. Это символически мож­но представить в виде амплитуды <r, t = t1 P, t= 0>. И яс­но, что она зависит и от r, и от t. Помещая детектор в разные места и делая измерения в разные моменты времени, вы получите разные результаты. Эта функция r и t, вообще говоря, удовле­творяет дифференциальному уравнению, которое является волно­вым уравнением. Скажем, в нерелятивистском случае это уравне­ние Шредингера. Получается волновое уравнение, аналогичное уравнению для электромагнитных волн или звуковых волн в газе. Однако надо подчеркнуть, что волновая функция, удовлет­воряющая уравнению, не похожа на реальную волну в простран­стве; с этой волной нельзя связать никакой реальности, как это делается со звуковой волной.

Хотя, имея дело с одной частицей, можно начать пытаться мыслить на языке «корпускулярных волн», но ничего в этом хорошего нет, потому что если, скажем, частиц не одна, а две, то амплитуда обнаружить одну из них в r1 а другую в r2 не есть обычная волна в трехмерном пространстве, а зависит от шести пространственных переменных r1 и r2. Когда частиц две (или больше), возникает потребность в следующем добавочном прин­ципе. Если две частицы не взаимодействуют, то амплитуда того, что одна частица совершит что-то одно, а другая сделает что-то другое, есть произведение двух амплитуд — амплитуд того, что две частицы проделали бы это по отдельности. Напри­мер, если <а|s1> есть амплитуда того, что частица 1 перейдет из s1 в а, а <b|s2> — амплитуда того, что частица 2 перейдет из s2 в b, то амплитуда того, что оба эти события произойдут вместе, есть

<a|sl><b|s2>.

И еще одну вещь надо подчеркнуть. Предположим, нам не­известно, откуда появляются частицы на фиг. 1.2, прежде чем они пройдут через щели 1 и 2 в первой стенке. Несмотря на это, мы все равно можем предсказать, что произойдет за стенкой (скажем, вычислить амплитуду попасть в х), если только нам даны два числа: амплитуда попадания в 1 и амплитуда попада­ния в 2. Иными словами, из-за того, что амплитуды последова­тельных событий перемножаются, как это показано в уравнении (1.6), все, что вам нужно знать для продолжения анализа,— это два числа, в данном частном случае <1|s> и <2|s>. Этих двух комплексных чисел достаточно для того, чтобы предска­зать все будущее. Это-то и делает квантовую механику простой. В следующих главах выяснится, что именно это мы и делаем, когда отмечаем начальные условия при помощи двух (или нескольких) чисел. Конечно, эти числа зависят от того, где рас­положен источник и каковы другие свойства прибора, но, как только эти числа даны, все подобные детали нам больше не нужны.

§ 2. Картина интерференции от двух щелей

Рассмотрим еще раз вопрос, который мы довольно подробно обсудили раньше, в гл. 37 (вып. 3). Сейчас мы используем идею об амплитуде во всей ее мощи, чтобы показать вам, как она работает. Вернемся к старому опыту, изображенному на фиг. 1.1, добавив к нему еще источник света и поместив его за щелями (ср. фиг. 37.4 гл. 37). В гл. 37 мы обнаружили следующий приме­чательный результат. Если мы заглядывали за щель 1 и заме­чали фотоны, рассеивавшиеся где-то за ней, то распределение вероятности того, что электрон попадал в х при одновременном наблюдении этих фотонов, было в точности такое же, как если бы щель 2 была закрыта. Суммарное распределение для элект­ронов, которые были «замечены» либо у щели 1, либо у щели 2, было суммой отдельных распределений и было совсем не похоже на распределение, которое получалось, когда свет бывал вы­ключен. По крайней мере так бывало, когда использовался свет с малой длиной волн. Когда длина волны начинала расти и у нас исчезала уверенность в том, у какой из щелей произо­шло рассеяние света, распределение становилось похожим на то, которое бывало при выключенном свете.

Посмотрим теперь, что здесь происходит, используя наши новые обозначения и принципы композиции амплитуд. Чтобы упростить запись, можно через j1 опять обозначить амплитуду того, что электрон придет в х через щель 1, т. е.



Сходным же образом j2 будет обозначать амплитуду того, что электрон достигнет детектора через щель 2:



Это — амплитуды проникновения электрона через щель и появле­ния в х, когда света нет. А если свет включен, мы поставим себе вопрос: какова амплитуда процесса, в котором вначале электрон выходит из s, а фотон испускается источником света L, а в конце электрон оказывается в ж, а фотон обнаруживается у щели 1? Предположим, что мы с помощью счетчика D1 наблюдаем фотон у щели 1 (фиг. 1.3), а такой же счетчик D2 считает фо­тоны, рассеянные у щели 2.



Фиг. 1.3. Опыт, в котором определяется, через которую из щелей проник электрон.

Тогда можно говорить об ампли­туде появления фотона в счетчике D1 а электрона в x; и об амплитуде появления фотона в счетчике D2, а электрона в х. Попробуем их подсчитать.

Хоть мы и не располагаем правильной математической формулой для всех множителей, входящих в этот расчет, но дух расчета вы почувствуете из следующих рассуждений. Во-первых, имеется амплитуда <1|s> того, что электрон доходит от источника к щели 1. Затем можно предположить, что имеется конечная амплитуда того, что, когда электрон находится у щели 1, он рассеивает фотон в счетчик D1. Обозначим эту ам­плитуду через а. Затем имеется амплитуда <x|1> того, что электрон переходит от щели 1 к электронному счетчику в х. Амплитуда того, что электрон перейдет от s к х через щель 1 и рассеет фотон в счетчик D1 тогда равна

<x|l> a <l|s>.

Или в наших прежних обозначениях это просто аj1.

Имеется также некоторая амплитуда того, что электрон, проходя сквозь щель 2, рассеет фотон в счетчик D1. Вы скажете: «Это невозможно; как он может рассеяться в счетчик D1? если тот смотрит прямо в щель 1?» Если длина волны достаточно велика, появляются дифракционные эффекты, и это становится возможным. Конечно, если прибор будет собран хорошо и если используются лишь фотоны с короткой длиной волны, то ам­плитуда того, что фотон рассеется в счетчик D1 от электрона в щели 2, станет очень маленькой. Но для общности рассуждения мы учтем тот факт, что такая амплитуда всегда имеется, и обо­значим ее через b. Тогда амплитуда того, что электрон проходит через щель 2 и рассеивает фотон в счетчик D1 есть



Амплитуда обнаружения электрона в х и фотона в счетчике D1 есть сумма двух слагаемых, по одному для каждого мысли­мого пути электрона. Каждое из них в свою очередь составлено из двух множителей: первого, выражающего, что электрон прошел сквозь щель, и второго — что фотон рассеян таким электроном в счетчик D1; мы имеем



Аналогичное выражение можно получить и для случая, ког­да фотон будет обнаружен другим счетчиком D2. Если допус­тить для простоты, что система симметрична, то а будет также амплитудой попадания фотона в счетчик D2, когда электрон проскакивает через щель 2, a b — амплитудой попадания фо­тона в счетчик D2, когда электрон проходит через щель 1. Соот­ветствующая полная амплитуда — амплитуда того, что фотон окажется в счетчике D2, а электрон в х,— равна



Вот и все. Теперь мы легко можем рассчитать вероятность тех или иных случаев. Скажем, мы желаем знать, с какой ве­роятностью будут получаться отсчеты в счетчике D1 при попада­нии электрона в х. Это будет квадрат модуля амплитуды, давае­мой формулой (1.8), т. е. попросту |aj1+bj2|2. Поглядим на это выражение внимательнее. Прежде всего, если b=0 (мы хотели бы, чтобы наш прибор работал именно так), ответ просто равен |j1|2 с множителем |a|2. Это как раз то рас­пределение вероятностей, которое получилось бы при наличии лишь одной щели, как показано на фиг. 1.4, а.





Фиг. 1.4. Вероятность отсчета электрона в х при условии, что в D1 замечен фотон в опыте, показанном на фиг. 1.3. а — при b=0; б — при b=а; в — при 0<b<а.

С другой сторо­ны, если длина волны велика, рассеяние за щелью 2 в счетчик D1 может стать почти таким же, как за щелью 1. Хотя в а и b могут входить какие-то фазы, возьмем самый простой случай, когда обе фазы одинаковы. Если а практически совпадает с b, то полная вероятность обращается в | j1+j2|2, умноженное на |а|2, потому что общий множитель а можно вынести. Но тогда выходит то самое распределение вероятностей, которое получилось бы, если бы фотонов вовсе не было. Следовательно, когда длина волны очень велика (и детектировать фотоны бес­полезно), вы возвращаетесь к первоначальной кривой распре­деления, на которой видны интерференционные эффекты, как показано на фиг. 1.4,б. Когда же детектирование частично все же оказывается эффективным, возникает интерференция между большим количеством j1 и малым количеством j2 и вы получаете промежуточное распределение, такое, какое намечено на фиг. 1.4,в. Само собой разумеется, если нас заинтересуют одно­временные отсчеты фотонов в счетчике D2 и электронов в х, то мы получим тот же результат. Если вы вспомните рассужде­ния гл. 37 (вып. 3), то увидите, что эти результаты описывают количественно то, что было сказано там.

Нам хотелось бы подчеркнуть очень важное обстоятельство и предостеречь от часто допускаемой ошибки. Пусть вас инте­ресует только амплитуда того, что электрон попадает в х, причем вам безразлично, в какой счетчик попал фотон — в D1 или в D2. Должны ли вы складывать амплитуды (1.8) и (1.9)? Нет! Никог­да не складывайте амплитуды разных, отличных друг от друга конечных состояний. Как только фотон был воспринят одним из фотонных счетчиков, мы всегда, если надо, можем узнать, не возмущая больше системы, какая из альтернатив (взаимо­исключающих событий) реализовалась. У каждой альтерна­тивы есть своя вероятность, полностью независимая от другой. Повторяем, не складывайте амплитуд для различных конечных условий (под «конечным» мы понимаем тот момент, когда нас интересует вероятность, т. е. когда опыт «закончен»). Зато нужно складывать амплитуды для различных неразличимых альтернатив в ходе самого опыта, прежде чем целиком закон­чится процесс. В конце процесса вы можете, если хотите, ска­зать, что вы «не желаете смотреть на фотон». Это ваше личное дело, но все же амплитуды складывать нельзя. Природа не знает, на что вы смотрите, на что нет, она ведет себя так, как ей положено, и ей безразлично, интересуют ли вас ее данные или нет. Так что мы не должны складывать амплитуды. Мы сперва возводим в квадрат модули амплитуд для всех возможных разных конечных состояний, а затем уж складываем. Пра­вильный результат для электрона в x и фотона то ли в D1 то ли в D2 таков:



§ 3. Рассеяние на кристалле

Следующий пример — это явление, в котором интерферен­цию амплитуд вероятности следует проанализировать тщатель­нее. Речь идет о процессе рассеяния нейтронов на кристалле. Пусть имеется кристалл, в котором много атомов, а в центре каждого атома — ядро; ядра расположены периодически, и откуда-то издалека на них налетает пучок нейтронов. Различ­ные ядра в кристалле можно пронумеровать индексом i, где i пробегает целые значения 1, 2, 3, ... , N, а N равняется общему числу атомов. Задача состоит в том, чтобы подсчитать вероят­ность того, что нейтрон окажется в счетчике, изображенном на фиг. 1.5.



Фиг. 1.5. Измерение рассеяния нейтронов на кристалле.

Для каждого отдельного атома i амплитуда того, что нейтрон достигнет счетчика С, равна амплитуде того, что нейтрон из источника S попадет в ядро i, умноженной на ампли­туду а рассеяния в этом месте и умноженной на амплитуду того, что он из i попадет в счетчик С. Давайте запишем это:



Написав это, мы предположили, что амплитуда рассеяния а — одна и та же для всех атомов. Здесь у нас есть множество, по-видимому, неразличимых путей. Они неразличимы оттого, что нейтрон с небольшой энергией рассеивается на ядре, не выбивая при этом самого атома с его места в кристалле — никакой «отметки» о рассеянии не остается. Согласно нашим прежним рассуждениям, полная амплитуда того, что нейтрон попал в С, включает в себя сумму выражения (1.11) по всем атомам:



Из-за того, что складываются амплитуды рассеяния на ато­мах, по-разному расположенных в пространстве, у амплитуд будут разные фазы, и это даст характерную интерференционную картину, которую мы уже анализировали на примере рассеяния света на решетке.

Интенсивность нейтронов как функция угла в подобном опыте действительно ч часто обнаруживает сильнейшие изменения — очень острые интерференционные пики, между которы­ми ничего нет (фиг. 1.6, а).



Фиг. 1.6. Скорость счета нейтронов как функция угла, а — для ядер со спином 0; б — вероятность рассеяния с перево­ротом спина; в — наблюдаемая скорость счета для ядра со спи­ном 1/2.

Однако в некоторых сортах кристал­лов этого не случается, в них наряду с упомянутыми выше дифракционными пиками имеется общий фон от рассеяния во всех направлениях. Мы должны попытаться понять столь та­инственную с виду причину этого. Дело в том, что мы не учли одного важного свойства нейтрона. Его спин равен 1/2. и тем самым он может находиться в двух состояниях: либо его спин направлен вверх (скажем, поперек страницы на фиг. 1.5), либо вниз. И если у ядер самого кристалла спина нет, то спин нейтрона никакого действия не окажет. Но когда и у ядер кристалла есть спин, равный, скажем, тоже 1/2, то вы заметите фон от описанного выше размазанного рассеяния. Объяснение состоит в следующем.

Если спин нейтрона куда-то направлен и спин атомного ядра направлен туда же, то в процессе рассеяния направление спина не меняется. Если же спины нейтрона и атомного ядра направлены в противоположные стороны, то рассеяние может происходить посредством двух процессов, в одном из которых направления не меняются, а в другом происходит обмен направлениями. Это правило о том, что сумма спинов не должна меняться, аналогично нашему классическому закону сохране­ния момента количества движения. И мы уже в состоянии будем понять интересующее нас явление, если предположим, что все ядра, на которых происходит рассеяние, имеют одно и то же направление спина. Нейтрон с тем же направлением спина тогда рассеется так, что получится ожидавшееся узкое интерферен­ционное распределение. А что будет с нейтроном с противопо­ложным направлением спина? Если он рассеивается без пере­ворота направления спина, то ничего по сравнению со сказан­ным не меняется; но если при рассеянии оба спина перевора­чиваются, то, вообще говоря, можно указать, на каком из ядер произошло рассеяние, потому что именно у этого ядра спин перевернулся. Но если мы в состоянии указать, на каком атоме случилось рассеяние, то причем здесь остальные атомы? Ни при чем, конечно. Рассеяние здесь такое же, как от отдельного атома.

Чтобы учесть этот эффект, надо видоизменить математиче­скую формулировку уравнения (1.12), потому что в том анализе состояния не были охарактеризованы полностью. Пусть вна­чале у всех нейтронов, вылетающих из источника, спин направ­лен вверх, а у всех ядер кристалла — вниз. Во-первых, нам нужна амплитуда того, что в счетчике нейтронов их спин ока­жется направленным вверх и все спины в кристалле будут по-прежнему смотреть вниз. Это ничем не отличается от наших прежних рассуждений. Обозначим через а амплитуду рассея­ния без переворота спина. Амплитуда рассеяния от i-го атома, разумеется, равна



Поскольку все спины атомов направлены вниз, разные альтерна­тивы (разные значения i) нельзя друг от друга отличить. В этом процессе все амплитуды интерферируют.

Но есть и другой случай, когда спин детектируемого нейтро­на смотрит вниз, хотя вначале, в S, он смотрел вверх. Тогда в кристалле один из спинов должен перевернуться вверх, скажем спин k-го атома. Допустим, что у всех атомов амплитуда рас­сеяния с переворотом спина одна и та же и равна 6. (В реальном кристалле имеется еще одна неприятная возможность: пере­вернутый спин переходит к какому-то другому атому, но до­пустим, что в нашем кристалле вероятность этого мала.) Тогда амплитуда рассеяния равна



Если мы спросим теперь, какова вероятность того, что у нейтро­на спин окажется направленным вниз, а у k-го ядра — вверх, то она будет равняться квадрату модуля этой амплитуды, т. е. просто |b|2, умноженному на |<С|k><k|S>|2. Второй множитель почти не зависит от того, где атом k расположен в кристалле, и все фазы при вычислении квадрата модуля ис­чезают. Вероятность рассеяния на любом ядре кристалла с пере­воротом спина, стало быть, равна



что дает гладкое распределение, как на фиг. 1.6, б.

Вы можете возразить: «А мне все равно, какой атом перевер­нулся». Пусть так, но природа-то это знает, и вероятность на самом деле выходит такой, как написано выше,— никакой интерференции не остается. А вот если вас заинтересует ве­роятность того, что спин в детекторе будет направлен вверх, а спины всех атомов — по-прежнему вниз, то вы должны будете взять квадрат модуля суммы:



Поскольку у каждого слагаемого в этой сумме есть своя фаза, то они интерферируют и появляется резкая интерференционная картина. И если мы проводим эксперимент, в котором мы не наблюдаем спина детектируемого нейтрона, то могут произойти события обоих типов и сложатся отдельные вероятности. Полная вероятность (или скорость счета) как функция угла тогда выглядит подобно кривой на фиг. 1.6, в.

Давайте еще раз окинем взглядом физику этого опыта. Если вы способны в принципе различить взаимоисключающие ко­нечные состояния (хотя вы и не собирались на самом деле этого делать), то полная конечная вероятность получается подсчетом вероятности каждого состояния (а не амплитуды) и последую­щим их сложением. А если вы неспособны даже в принципе различить конечные состояния, тогда надо сперва сложить амплитуды вероятностей, а уж потом вычислять квадрат моду­ля и находить самую вероятность. Заметьте особенно, что если бы вы попытались представить нейтрон в виде отдельной волны, то получили бы одно и то же распределение и для рассеяния нейтронов, вращающихся спином вниз, и для нейтронов, вра­щающихся спином вверх. Вы должны были бы сказать, что «волна» нейтронов со спином, направленным вниз, пришла ото всех различных атомов и интерферирует так же, как это делает одинаковая по длине волна нейтронов со спином, направленным вверх. Но мы знаем, что на самом деле это не так. Так что (мы уже это отмечали) нужно быть осторожным и не представлять себе чересчур реально волны в пространстве. Они полезны для некоторых задач. Но не для всех.

§ 4. Тождественные частицы

Очередной опыт, который мы хотим описать, продемонстри­рует одно из замечательных следствий квантовой механики. В нем снова встретятся такие физические события, в которых существуют два неразличимых пути и, как всегда при таких об­стоятельствах, возникает интерференция амплитуд. Мы собира­емся рассмотреть рассеяние одних ядер на других при сравни­тельно низкой энергии. Начнем, скажем, с a-частиц (это, как вы знаете, просто ядра гелия), бомбардирующих кислород. Чтобы облегчить анализ реакции, проведем его в системе центра масс, в которой скорости ядра кислорода и a-частицы перед столкновением противоположны, а после столкновения тоже противоположны (фиг. 1.7, а). (Величины скоростей, конечно, различны, поскольку массы различны.) Предположим также, что энергия сохраняется и что энергия столкновения настолько мала, что частицы ни раскалываются, ни переходят в возбужденное состояние. Причина, отчего частицы отклоняют друг друга, состоит попросту в том, что обе они заряжены положительно и, выражаясь классически, отталкиваются, проходя одна мимо дру­гой. Рассеяние на разные углы будет происходить с различной вероятностью, и мы хотим выяснить угловую зависимость подоб­ного рассеяния. (Конечно, все это можно рассчитать классически, и по удивительной случайности оказалось, что ответ на этот вопрос в квантовой механике и в классической — один и тот же. Это очень занятно, потому что ни при каком законе сил, кроме закона обратных квадратов, так не бывает, стало быть, это и впрямь случайность.)

Вероятность рассеяния в разных направлениях можно из­мерить в опыте, изображенном на фиг. 1.7,а.



Фиг. 1.7. Рассеяние a-частиц на ядрах кислорода, наблюдаемое в системе центра масс.

Счетчик в положе­нии D1 может быть сконструирован так, чтобы детектировать только a-частицы; счетчик в положении D2 может быть устроен так, чтобы детектировать кислород просто для проверки. (В си­стеме центра масс детекторы должны смотреть друг на друга, в лабораторной — нет.) Опыт заключается в измерении вероят­ности рассеяния в разных направлениях. Обозначим через f(q) амплитуду рассеяния в счетчики, когда они расположены под углом q; тогда | f(q)|2 — наша экспериментально опре­деляемая вероятность.

Можно было бы провести и другой опыт, в котором наши счетчики реагировали бы и на a-частицу, и на ядро кислорода. Тогда нужно сообразить, что будет, если мы решим не забо­титься о том, какая из частиц попала в счетчик. Разумеется, когда кислород летит в направлении q, то с противоположной стороны, под углом (p-q), должна оказаться a-частица (фиг. 1.7,б). Значит, если f(q) — амплитуда рассеяния кисло­рода на угол 0, то f(р-q) — это амплитуда рассеяния a-частицы на угол θ. Таким образом, вероятность того, что какая-то частица окажется в счетчике, который находится в положе­нии d1, равна



Заметьте, что в принципе оба состояния различимы. Даже если в этом опыте мы их не различали, мы могли бы это сделать. И в соответствии с нашими прежними рассуждениями мы, стало быть, должны складывать вероятности, а не амплитуды.

Приведенный выше результат справедлив для многих ядер. Мишенью здесь могут служить и кислород, и углерод, и бериллий, и водород. Но он неверен при рассеянии a-частиц на a-частицах. В том единственном случае, когда обе частицы в точности одинаковы, экспериментальные данные не согласуются с пред­сказаниями формулы (1.14). Например, вероятность рассеяния на угол 90° в точности вдвое больше предсказанной вышеизло­женной теорией — с частицами, являющимися ядрами «гелия», номер не проходит. Если мишень из Не3, а налетают на нее a-частицы (Не4), то все хорошо. И только когда мишень из Не4, т. е. ее ядра тождественны падающим a-частицам, только тогда рассеяние меняется с углом каким-то особым образом.

Быть может, вы уже догадались, в чем дело? В счетчике a-частица может очутиться по двум причинам: либо из-за рас­сеяния налетевшей a-частицы на угол q, либо из-за рассеяния ее на угол (p-q). Как мы можем удостовериться, кто попал в счетчик — частица-снаряд или частица-мишень? Никак. В случае рассеяния a-частиц на a-частицах существуют две альтернативы, различить которые нельзя. Приходится дать амплитудам вероятности интерферировать при помощи сложе­ния, и вероятность обнаружить в счетчике a-частицу есть квад­рат этой суммы:



Это совсем не то, что (1.14). Возьмите, скажем, угол я/2 (это легче себе представить). При q=p/2 мы, естественно, имеем f(q)=f(p-q), так что из (1.15) вероятность оказывается равной



А с другой стороны, если бы не было интерференции, форму­ла (1.14) дала бы только 2|f(p/2)|2. Так что на угол 90° рас­сеивается вдвое больше частиц, чем можно было ожидать. Конечно, и под другими углами результаты будут другие. И мы приходим к необычному выводу: когда частицы тождественны, происходит нечто новое, чего не бывало, когда частицы можно было друг от друга отличить. При математическом описании вы обязаны складывать амплитуды взаимоисключающих процессов, в которых обе частицы просто обмениваются ролями, и происходит интерференция.

Еще более неожиданное явление происходит с рассеянием электронов на электронах или протонов на протонах. Тогда не верен ни один из прежних результатов! Для этих частиц мы должны призвать на помощь совершенно новое правило: если попадающий в некоторую точку электрон обменивается своей индивидуальностью с другим электроном, то новая ам­плитуда интерферирует со старой в противофазе. Это все равно интерференция, но с обратным знаком. В случае a-частиц, когда происходит обмен a-частицами, достигающими счетчика, амплитуды интерферируют с одним и тем же знаком. А в случае электронов амплитуды обмена интерферируют с разными зна­ками. С точностью до одной детали, о которой будет сейчас сказано, правильная формула для электронов в опыте, подобном изображенному на фиг. 1.8, такова:



Это утверждение нуждается в уточнении, потому что мы не учли спин электрона (у a-частиц спина нет).



Фиг, 1.8. Рассеяние электронов на электронах.

Если спины сталкивающихся электронов параллельны, то процессы а и б неразличимы.

Спин электрона можно считать направленным либо вверх, либо вниз по отно­шению к плоскости рассеяния. Если энергия в опыте достаточно низка, то магнитные силы, возникающие от токов, будут ма­лы и не повлияют на спин. Предположим в нашем анализе, что так оно и есть, так что нет шансов, чтобы спины при столкно­вении перевернулись. Какой бы спин у электрона ни был, он уносит его с собой. Мы видим теперь, что есть много возможно­стей. У частицы-снаряда и частицы-мишени оба спина могут быть направлены вверх, или вниз, или в разные стороны. Если они оба направлены вверх, как на фиг. 1.8 (или оба — вниз), то после рассеяния останется то же самое, и амплитуда про­цесса будет разностью амплитуд тех двух возможностей, ко­торые показаны на фиг. 1.8. Вероятность обнаружить электрон в счетчике D1 тогда будет даваться формулой (1.16).

Предположим, однако, что у «снаряда» спин направлен вверх, а у «мишени» — вниз. У электрона, попавшего в счетчик D1, спин может оказаться либо направленным вверх, либо —вниз, и, измеряя этот спин, мы можем сказать, выскочил ли этот элек­трон из бомбардирующего пучка или же из мишени.



Фиг. 1.9. Рассеяние электронов с антипараллельными спинами.

Эти две возможности показаны на фиг. 1.9; в принципе они различимы, и поэтому интерференции не получится, просто сложатся две вероятности. Все это верно и тогда, когда оба первоначальных спина перевернуты, т. е. если спин слева смотрит вниз, а спин справа — вверх.

Таблица 1.1 · рассеяние неполяризованных частиц со спином 1/2



Наконец, если электроны вылетают случайно (например, они вылетают из накаленной вольфрамовой нити полностью неполяризованным пучком), то с равной вероятностью каждый отдельный электрон вылетит либо спином вверх, либо спином вниз. Если мы не собираемся в нашем опыте измерять в ка­кой-нибудь точке спин электронов, то получается то, что назы­вают экспериментом с неполяризованными частицами. Результат этого эксперимента лучше всего подсчитать, перечислив все мыс­лимые возможности, как это сделано в табл. 1.1. Для каждой различимой альтернативы отдельно подсчитана вероятность. Тогда полная вероятность есть сумма всех отдельных вероят­ностей. Заметьте, что для неполяризованных пучков результат при q=p/2 составляет половину классического результата для независимых частиц.

Поведение тождественных частиц приводит ко многим ин­тересным следствиям; в следующей главе мы обсудим их по­подробнее.

* Вообще-то направление рассеяния должно, конечно, описываться двумя углами — полярным углом j и азимутом q. Тогда следовало бы ска­зать, что рассеяние кислорода в направлении (q,j) означает, что a-частица движется в направлении (p-q, j+p). Однако для кулоновского рассеяния (и многих других случаев) амплитуда рассеяния не зависит от j. Тогда амплитуда того, что кислород полетел под углом 6, совпадает с ам­плитудой того, что a-частица полетела под углом (p-q).



* По-русски, наверно, правильнее говорить амплитуда вероятности, но короче говорить просто амплитуда и примириться с выражением типа «амплитуда того, что электрон находится в точке х».— Прим. ред.



* В американском издании этот том начинается с двух глав из второго тома [гл. 37 и 38 (вып. 3)], кото­рые авторы считали нужным повторить. Это было сде­лано для того, чтобы третий том можно было чи­тать, не обращаясь к прежним томам. В русском издании мы не стали печатать их снова: читатель должен всегда держать первые выпуски под рукой, поэтому нумерация глав в русском издании сдвинута на 2 единицы по сравнению с третьим томом. Из тех же соображений мы не перепечатали вновь гл. 34 и 35, они вошли в вып. 7.— Прим. ред.

 

 

Глава 2

ТОЖДЕСТВЕННЫЕ ЧАСТИЦЫ

§ 1.Бозе-частицы и ферми-частицы

§ 2.Состояния с двумя бозе-частицами

§ 3.Состояния с n бозе-частицами

§ 4.Излучение и поглощение фотонов

§ 5. Спектр абсолютно черного тела

§ 6.Жидкий гелий

§ 7.Принцип запрета

Повторить: гл. 41 (вып. 4) «Броуновское движение» (об излучении абсолютно черного тела гл. 42 (вып 4 «Применения кинетической теории»

§ 1. Бозе-частицы и ферми-частицы

В предыдущей главе мы начали рассматри­вать особые правила, по которым происходит с интерференция в процессах с двумя тождественными частицами. Тождественными мы счи­таем такие частицы, которые, подобно электро­нам, никак невозможно отличить друг от друга. Если в процессе имеются две тождественные частицы, то замена той, которая повернула к счетчику, на другую — это неотличаемая альтернатива, которая, как и во всех случаях неотличимых альтернатив, интерферирует с первоначальным случаем, когда обмена не было. Амплитудой события тогда служит сумма двух интерферирующих амплитуд, и существенно, что в одних случаях интерференция происходит в фазе, а в других — в противофазе.

Представим, что сталкиваются две частицы а и b и частица а рассеивается в направлении 1, а частица b — в направлении 2 (фиг. 2.1, а).





Фиг. 2.1. При рассеянии двух тождественных частиц процессы а и б неразличимы.

Пусть f(q) будет амплитуда этого процесса; тогда вероятность Р1 наблюдения подобного события пропорциональна |f(q)|2. Конечно, могло случиться, что частица b рассеялась в счетчик 1, а частица а направилась в счетчик 2 (фиг. 2.1, б). Если считать, что никаких спе­циальных направлений, определяемых спином или чем-то подобным, в опыте нет, то вероят­ность Р2 этого события можно просто записать в виде | f(p-q)|2, потому что этот процесс попросту эквивалентен первому процессу, в котором счетчик 1 поставили под углом (я — 6). И вам могло бы показаться, что амплитуда вто­рого процесса равна просто f(p-q). Но это не обязательно так, потому что в ней мог стоять произвольный фазовый множитель. Иначе говоря, амплитуда могла бы быть такой:



Ведь и такая амплитуда все еще приводит к вероятности Р2, равной |f(p-q)|2.

Посмотрим теперь, что случается, если частицы a и b оказы­ваются идентичными. Тогда два разных процесса, показанных на двух частях фиг. 2.1, уже нельзя друг от друга отличить. Существует амплитуда того, что а или b попадает в счетчик 1, тогда как оставшаяся частица попадает в счетчик 2. Эта амплитуда есть сумма амплитуд двух процессов, показанных на фиг. 2.1.

Если первую мы обозначим f(q), то вторая будет и теперь уже фазовый множитель очень важен, потому что мы собираемся складывать амплитуды. Предположим, что мы обязаны умножать амплитуду на некий фазовый множитель всякий раз, когда две частицы обмениваются ролями. Если они еще раз обменяются ими, то множитель появится еще раз. Но при этом мы снова возвратимся к первому процессу. Фазовый множитель, взятый дважды, должен вернуть нас к тому, с чего мы начали,— его квадрат должен быть равен единице. Есть только две возможности:

равно либо +1, либо -1. Обмен при­водит ко вкладу в амплитуду с тем же знаком или ко вкладу с противоположным знаком. И оба случая встречаются в природе, каждый для своего класса частиц. Частицы, интерферирующие с положительным знаком, называются бозе-частицами, а те, которые интерферируют с отрицательным знаком, именуются ферми-частицами. Ферми-частицы — это электрон, мюон, оба нейтрино, нуклоны и барионы. Стало быть, амплитуда рассеяния тождественных частиц имеет вид для бозе-частиц:

(Амплитуда процесса)+(Амплитуда обмена); (2.1) для ферми-частиц:

(Амплитуда процесса)-(Амплитуда обмена). (2.2)

Для частиц со спином (скажем, электронов) возникает добавочное усложнение. Нужно указывать не только местопо­ложение частиц, но и направление их спинов. Только в том случае, когда частицы идентичны и их спиновые состояния тоже идентичны, только тогда при обмене частицами амплитуды ин­терферируют. А если вас интересует рассеяние неполяризован­ных пучков, являющихся смесью различных спиновых состоя­ний, то нужны еще выкладки и сверх этого.

Интересная проблема возникает при наличии двух или больше тесно связанных частиц. К примеру, в a-частице сидят четыре частицы: два нейтрона и два протона. И когда рассеи­ваются две a-частицы, может представиться несколько возмож­ностей. Может случиться, что при рассеянии обнаружится ко­нечная амплитуда того, что один из нейтронов перескочит от одной a-частицы к другой, а нейтрон из другой a-частицы пе­рейдет к первой, так что две a-частицы после рассеяния оказы­ваются не первоначальными частицами — произошел обмен парой нейтронов (фиг. 2.2).



Фиг. 2.2. Рассеяние двух a-частиц.

а —- обе частицы сохраняют свою индивидуальность; б — во время рассеяния происходит обмен нейтроном.

Амплитуда рассеяния с обменом парой нейтронов будет интерферировать с амплитудой рассея­ния без такого обмена, и интерференция должна иметь знак минус, потому что состоялся обмен ферми-частицами. С другой стороны, если относительная энергия двух a-частиц так мала, что они находятся сравнительно далеко друг от друга (скажем, из-за кулоновского отталкивания) и вероятность обмена лю­быми внутренними частицами оказывается незначительной, в этом случае a-частицу можно считать простейшим объектом, не задумываясь о деталях ее внутреннего строения. В этих условиях в амплитуду рассеяния войдут только два члена. Либо обмена вовсе нет, либо при рассеянии происходит обмен всеми четырьмя нуклонами. Поскольку и протоны, и нейтроны в a-частице — это ферми-частицы, обмен любой парой меняет знак амплитуды рассеяния. Пока внутри a-частиц нет никаких изменений, обмен двумя a-частицами означает то же самое, что обмен четырьмя парами ферми-частиц. Каждая пара меняет знак, и в итоге амплитуды складываются со знаком плюс. Так что a-частица ведет себя как бозе-частица.

Значит, правило состоит в том, что сложные объекты в тех обстоятельствах, когда их можно считать неделимыми объекта­ми, ведут себя как бозе- или ферми-частицы, смотря но тому, содержится ли в них четное или нечетное число ферми-частиц.

Все элементарные ферми-частицы, о которых мы упоминали (такие, как электрон, протон, нейтрон и т. д.), обладают спином j=1/2. Если несколько таких ферми-частиц образует сложный объект, общий их спин может быть либо целым, либо полуцелым. К примеру, у самого распространенного изотопа гелия Не4, в ко­тором два протона и два нейтрона, спин равен нулю, а у Li7, в котором протонов три, а нейтронов четыре, спин равен 3/2. Позже мы выучим правила сложения моментов количества движения, а пока просто заметим, что всякий сложный объект с полуцелым спином имитирует ферми-частицу, тогда как всякий сложный объект с целым спином имитирует бозе-частицу.

Интересно, отчего так получается? Отчего частицы с полу­целым спином суть ферми-частицы, чьи амплитуды складывают­ся со знаком минус, а частицы с целым спином суть бозе-частицы, чьи амплитуды складываются с положительным знаком? Мы просим прощения за то, что неспособны элементарно объяснить вам это. Но объяснение существует, его нашел Паули, основываясь на сложных доводах квантовой теории поля и тео­рии относительности. Он показал, что эти факты с необходи­мостью связаны друг с другом; но мы не в состоянии найти спо­соб воспроизвести его аргументы на элементарном уровне. Это, видимо, одно из немногих мест в физике, когда правило формулируется очень просто, хотя столь же простого объясне­ния ему не найдено. Объяснение коренится глубоко в реляти­вистской квантовой механике. По-видимому, это означает, что мы до конца не понимаем лежащего в его основе принципа. Будем считать его пока одним из законов Вселенной.

§ 2. Состояния с двумя бозе-частицами

Теперь мы хотели бы обсудить интересное следствие из пра­вила сложения для бозе-частиц. Оно касается поведения этих частиц, когда их не одна, а несколько. Начнем с рассмотрения случая рассеяния двух бозе-частиц на двух различных рассеивателях. Нас интересуют не детали механизма рассеяния, а лишь одно: что происходит с рассеянными частицами. Пусть перед нами случай, показанный на фиг. 2.3.





Фиг. 2.3. Двойное рассеяние в близ­кие конечные состояния.

Частица а, рас­сеявшись, оказалась в состоянии 1. Под состоянием мы подра­зумеваем данное направление и энергию или какие-нибудь другие заданные условия. Частица b рассеялась в состояние 2.Предположим, что состояния 1 и 2 почти одинаковы. (На са­мом же деле мы хотели бы получить амплитуду того, что две частицы рассеялись в одном и том же направлении или в одно и то же состояние, но лучше будет; если мы сперва подумаем над тем, что произойдет, если состояния будут почти одинако­выми, а затем выведем отсюда, что бывает при их полном сов­падении.)

Пусть у нас была бы только частица а; тогда у нее была бы определенная амплитуда рас­сеяния в направлении 1, скажем <1|а>. А частица b сама по себе обладала бы амплитудой <2|b> того, что приземление произойдет в направлении 2. Если частицы не тождественны, то амплитуда того, что в одно и то же время произойдут оба рассеяния, равна попросту произведению

<1|а><2|b>. Вероятность же такого события тогда равна

|<l|a><2|b>|2 что также равняется

|<1|а>|2|<2|b>|2. Чтобы сократить запись, мы иногда будем полагать

<1|а>=а1, <2|b>=b2.

Тогда вероятность двойного рассеяния есть

|a1|2|b2|2.

Могло бы также случиться, что частица b рассеялась в на­правлении 1, а частица а —в направлении 2. Амплитуда та­кого процесса была бы равна

<2|а><1|b>, а вероятность такого события равна

|<2|а><1|b>|2=|a2|2|b1|2.

Представим себе теперь, что имеется пара крошечных счет­чиков, которые ловят рассеянные частицы. Вероятность Р2 того, что они засекут сразу обе частицы, равна просто

P2=|a1|2|b2|2+|a2|2|b1|2. (2.3)

Положим теперь, что направления 1 и 2 очень близки. Бу­дем считать, что а с изменением направления меняется плавно, тогда а1 и а2 при сближении направлений 1 и 2 должны приближаться друг к другу. При достаточном сближении амплитуды а1 и а2 сравняются, и можно будет положить а12 и обозна­чить каждую из них просто а; точно так же мы положим и b1=b2=b. Тогда получим

Р2=2|а|2|b|2. (2.4)

Теперь, однако, предположим, что а и b — тождественные бозе-частицы. Тогда процесс перехода а в состояние 1, а b в состояние 2 нельзя будет отличить от обменного процесса, в ко­тором b переходит в 2, а а — в 1. В этом случае амплитуды двух различных процессов могут интерферировать. Полная амплиту­да того, что в каждом из счетчиков появится по частице, равна

<1| а><2|b>+<2|а><1|b>, (2.5)

и вероятность того, что ими будет зарегистрирована пара, дается квадратом модуля этой амплитуды:

Р2= |а1b2+a2b1|2=4|a|2|b|2(2.6)

Б итоге выясняется, что вдвое более вероятно обнаружить две идентичные бозе-частицы, рассеянные в одно и то же состоя­ние, по сравнению с расчетом, проводимым в предположении, что частицы различны.

Хотя мы считали, что частицы наблюдаются двумя разными счетчиками,— это несущественно. В этом можно убедиться следующим образом. Вообразим себе, что оба направления 1 и 2 привели бы частицы в один и тот же маленький счетчик, кото­рый находится на каком-то расстоянии. Мы определим направ­ление 1, говоря, что оно смотрит в элемент поверхности dS1 счетчика. Направление же 2 смотрит в элемент поверхности dS2 счетчика. (Считается, что счетчик представляет собой по­верхность, поперечную к линии рассеяния.) Теперь уже нельзя говорить о вероятности того, что частица направится точно в каком-то направлении или в определенную точку пространства. Это невозможно — шанс зарегистрировать любое фиксирован­ное направление равен нулю. Если уж нам хочется точности, то нужно так определить наши амплитуды, чтобы они давали ве­роятность попадания на единицу площади счетчика. Пусть у нас была бы только одна частица я; она бы имела определенную амплитуду рассеяния в направлении 1. Пусть<1|а>=a1 определяется как амплитуда того, что а рассеется в единицу площади счетчика, расположенного в направлении 1. Иными словами, мы выбираем масштаб а1 и говорим, что она «нормирована» так, что вероятность того, что а рассеется в элемент площади dS1 равна



Если вся площадь нашего счетчика DS и мы заставим dS1 странст­вовать по этой площади, то полная вероятность того, что ча­стица а рассеется в счетчик, будет



Как и прежде, мы хотим считать счетчик настолько малым, что амплитуда а1 на его поверхности не очень меняется; зна­чит, а1 будет постоянным числом, и мы обозначим его через а. Тогда вероятность того, что частица а рассеялась куда-то в счетчик, равна



Таким же способом мы придем к выводу, что частица b (когда она одна) рассеивается в элемент площади dS2 с ве­роятностью



(Мы говорим dS2, а не dS1 в расчете на то, что позже ча­стицам а и b будет разрешено двигаться в разных направле­ниях.) Опять положим b2 равным постоянной амплитуде b; тогда вероятность того, что частица b будет зарегистрирована счетчиком, равна



Когда же имеются две частицы, то вероятность рассеяния а в dS1 и b в dS2 будет



Если нам нужна вероятность того, что обе частицы (и а, и b) попали в счетчик, мы должны будем проинтегрировать dS1 и dS2 по всей площади DS; получится



Заметим, кстати, что это равно просто ра·рb в точности так, как если бы мы предположили, что частицы а и b действуют независимо друг от друга.

Однако, когда две частицы тождественны, имеются две не­различимые возможности для каждой пары элементов поверх­ности dS1 и dS2. Частица а, попадающая в dS2, и частица b, по­падающая в dS1, неотличимы от а в dS1 и от b в dS2, так что амплитуды этих процессов будут интерферировать. (Когда у нас были две различные частицы, то, хотя мы на самом деле не заботились о том, какая из них куда попадает в счетчике, мы все же в принципе могли это узнать; так что интерференции не было. А для тождественных частиц мы и в принципе не можем этого сделать.) Мы должны тогда написать, что вероятность того, что пара частиц очутится в dS1 и dS2, есть



Однако сейчас, интегрируя по поверхности счетчика, нужно быть осторожным. Пустив dS1 и dS2 странствовать по всей пло­щади DS, мы бы сосчитали каждую часть площади дважды, поскольку в (2.13) входит все, что может случиться с каждой парой элементов поверхности dS1 и dS2. Но интеграл можно все равно подсчитать, если учесть двукратный счет, разделив результат пополам. Тогда мы получим, что Р2 для тождествен­ных бозе-частиц есть



И опять это ровно вдвое больше того, что мы получили в (2.12) для различимых частиц.

Если вообразить на мгновение, что мы откуда-то знали, что канал b уже послал свою частицу в своем направлении, то мож­но сказать, что вероятность того, что вторая частица направит­ся в ту же сторону, вдвое больше того, чего можно было бы ожи­дать, если бы мы посчитали это событие независимым. Таково уж свойство бозе-частиц. что если есть одна частица в каких-то условиях, то вероятность поставить в те же условия вторую вдвое больше, чем если бы первой там не было. Этот факт часто формулируют так: если уже имеется одна бозе-частица в данном состоянии, то амплитуда того, что туда же, ей на голову, можно будет поместить вторую, в Ц2 раз больше, чем если бы первой там не было. (Это неподходящий способ формулировать резуль­тат с той физической точки зрения, какую мы избрали, но, если это правило последовательно применять, оно все же приводит к верному результату.)

§ 3. Состояния с n бозе-частицами

Распространим наш результат на тот случай, когда имеются n частиц. Вообразим случай, изображенный на фиг. 2.4.



Фиг. 2.4. Рассеяние n частиц в близкие конечные состояния.

Есть n частиц а, b, с, . . . , которые рассеиваются в направлениях 1, 2, 3, . . . , п. Все n направлений смотрят в небольшой счет­чик, который стоит где-то поодаль. Как и в предыдущем параг­рафе, выберем нормировку всех амплитуд так, чтобы вероятность того, что каждая частица, действуя по отдельности, попадет в элемент поверхности dS счет­чика, была равна

|< >|2dS.

Сперва предположим, что частицы все различимы, тогда вероятность того, что n частиц будут одновременно зарегистрированы в n разных элементах поверхности, будет равна



Опять примем, что амплитуды не зависят от того, где в счет­чике расположен элемент dS (он считается малым), и обозна­чим их .просто а, b, с, .... Вероятность (2.15) обратится в



Прогоняя каждый элемент dS по всей поверхности DS счет­чика, получаем, что Рn(разные) — вероятность одновременно зарегистрировать n разных частиц — равна



Это просто произведение вероятностей попаданий в счетчик каждой из частиц по отдельности. Все они действуют незави­симо — вероятность попасть для одной из них не зависит от того, сколько других туда попало.

Теперь предположим, что все эти частицы — идентичные бозе-частицы. Для каждой совокупности направлений 1, 2, 3, ... существует много неразличимых возможностей. Если бы, ска­жем, частиц было только три, появились бы следующие воз­можности:



Возникает шесть различных комбинаций. А если частиц n, то будет n! разных, хотя и не отличимых друг от друга, комбина­ций; их амплитуды положено складывать. Вероятность того, что n частиц будут зарегистрированы в n элементах поверхности, тогда будет равна

│ a1b2c3 …+ a1b3c2 … + и т. д. +│2 dS1 dS2 dS3 ... dSn. (2.18)

И снова мы предположим, что все направления столь близки друг к другу, что можно будет положить а12= . . . . . . =аn=а и то же сделать с b, с, . . . ; вероятность (2.18) обратится в

|n!abc ... |2dS1dS2 ... dSn. (2.19)

Когда каждый элемент dS прогоняют по площади DS счет­чика, то всякое мыслимое произведение элементов поверхности считается n! раз; учтем это, разделив на n!, и получим



или



Сравнивая это с (2.17), видим, что вероятность совместного счета n бозе-частиц в n! раз больше, чем получилось бы в пред­положении, что все частицы различимы. Все это можно подыто­жить так:



Итак, вероятность в случае бозе-частиц в n! раз больше, чем вы получили бы, считая, что частицы действовали независимо. Мы лучше поймем, что это значит, если спросим: чему равна вероятность того, что бозе-частица перейдет в некоторое состоя­ние, в котором уже находятся n других частиц? Обозначим добавленную частицу буквой w. Если всего, включая w, имеется (n+1) частиц, то (2.20) обращается в



Это можно записать так:



или



Этот результат можно истолковать следующим образом. Число |w|2DS — это вероятность заполучить в счетчик части­цу w, если никаких других частиц нет; Рn(бозе) — это шанс того, что там уже есть n других бозе-частиц. Значит, (2.23) говорит нам, что когда у нас уже есть n других идентичных друг другу бозе-частиц, то вероятность того, что еще одна частица придет в то же состояние, усиливается в (n+1) раз. Вероят­ность получить еще один бозон там, где уже есть их n штук, в (n+1) раз больше той, какая была бы, если бы там раньше ни­чего не было. Наличие других частиц увеличивает вероятность заполучить еще одну.

§ 4. Излучение и поглощение фотонов

Повсюду в наших рассуждениях шла речь о процессе, по­хожем на рассеяние a-частиц. Но это необязательно; можно было бы говорить и о создании частиц, например об излучении света. При излучении света «создается» фотон. В этом случае уже не нужны на фиг. 2.4 входящие линии; можно просто счи­тать, что есть n атомов а, b, с, . . . , излучающих свет (фиг. 2.5).



Фиг. 2.5. Образование n фотонов в близких состояниях.

Значит, наш результат можно сформулировать и так: вероятность того, что атом излучит фотон в некотором конечном состоянии, увеличивается в (n+1) раз, если в этом состоянии уже есть n фотонов.

Многим больше нравится высказывать этот результат иначе; они говорят, что амплитуда испускания фотона увеличи­вается в Ц(п+1) раз, если уже имеется в наличии n фотонов. Разумеется, это просто другой способ сказать то же самое, если только иметь в виду, что эту амплитуду для получения вероят­ности надо просто возвести в квадрат.

В квантовой механике справедливо в общем случае утвержде­ние о том, что амплитуда получения состояния c из любого другого состояния j комплексно сопряжена амплитуде получе­ния j из c



Мы разберемся в этом чуть позже, а пока просто предположим, что на самом деле это так. Тогда этим можно воспользоваться, чтобы понять, как фотоны рассеиваются или поглощаются из данного состояния. Мы знаем, что амплитуда того, что фотон прибавится к какому-то состоянию, скажем к i, в котором уже находится n фотонов, равна



где а=<i|а> — амплитуда, когда нет других фотонов. Если воспользоваться формулой (2.24), то амплитуда обратного перехода — от (n+1) фотонов к n фотонам — равна



Но обычно говорят иначе; людям не нравится думать о пере­ходе от (n+1) к n, они всегда предпочитают исходить из того, что имелось n фотонов. Поэтому говорят, что амплитуда погло­щения фотона, если имеется n других, иными словами, перехода от n к (n-1), равна

<n-1|n>=Цna*. (2.27)

Это, разумеется, просто та же самая формула (2.26). Но тогда возникает новая забота — помнить, когда пишется Цn и когда Ц(n+1). Запомнить это можно так: множитель всегда равен корню квадратному из наибольшего числа имевшихся в нали­чии фотонов, все равно — до реакции или после. Уравнения (2.25) и (2.26) свидетельствуют о том, что закон на самом деле симметричен; несимметрично он выглядит лишь тогда, когда его записывают в виде (2.27).

Из этих новых правил проистекает множество физических следствий; мы хотим привести одно из них, касающееся испус­кания света. Представим случай, когда фотоны находятся в ящике,— можете вообразить, что ящик имеет зеркальные стен­ки. Пусть в этом ящике в одном и том же состоянии (с одними и теми же частотой, поляризацией и направлением) имеется n фо­тонов, так что их нельзя друг от друга отличить, и пусть в ящике имеется атом, который может испустить еще один фотон в таком же состоянии. Тогда вероятность того, что он испустит фотон, равна

(п+1)|a|2, (2.28)

а вероятность того, что он фотон поглотит, равна

n|а|2, (2.29)

где |а|2 — вероятность того, что он испустил бы фотон, если бы не было этих n фотонов. Мы уже говорили об этих правилах немного по-иному в гл. 42 (вып. 4). Выражение (2.29) утверждает, что вероятность того, что атом поглотит фотон и совершит переход в состояние с более высокой энергией, пропорциональ­на интенсивности света, освещающего его. Но, как впервые указал Эйнштейн, скорость, с которой атом переходит в более низкое энергетическое состояние, состоит из двух частей. Есть вероятность |а|2 того, что он совершит самопроизвольный переход, и есть вероятность вынужденного перехода n|а|2, пропорциональная интенсивности света, т. е. числу имеющихся фотонов. Далее, как заметил Эйнштейн, коэффициенты погло­щения и вынужденного испускания равны между собой и свя­заны с вероятностью самопроизвольного испускания. Здесь же мы выяснили, что если интенсивность света измеряется ко­личеством имеющихся фотонов (вместо того, чтобы пользоваться энергией в единице объема или в секунду), то коэффициенты поглощения, вынужденного испускания и самопроизвольного испускания все равны друг другу. В этом смысл соотношения между коэффициентами А и В, выведенного Эйнштейном [см. гл. 42 (вып. 4), соотношение (42.18)].

§ 5. Спектр абсолютно черного тела