Настройки шрифта

| |

Фон

| | | |

 

Глава 22

ЦЕПИ ПЕРЕМЕННОГО ТОКА



§ 1. Импедансы

§ 2. Генераторы

§ 3. Сети идеальных элементов; правила Кирхгофа

S 4. Эквивалентные контуры

§ 5. Энергия

§ 6. Лестничная сеть

§ 7. Фильтры

§ 8. Другие элементы цепи

Повторить: гл.2 (вып. 2) «Алгебра»; гл. 23 (вып. 2) «Резонанс»;

гл. 25 (вып. 2) «Линейные системы и обзор»

§ 1. Импедансы

В основном наши усилия при чтении этих лекций были направлены на то, чтобы по­лучить полные уравнения Максвелла. В преды­дущих двух главах мы обсудили следствия этих уравнений. Выяснилось, что они содержат объяснение всех статических явлений, которые мы изучали раньше, и явлений электромагнит­ных волн и света — вопроса, подробно изучав­шегося в самом начале нашего курса. Урав­нения Максвелла дают и то и другое, смотря по тому, где эти поля вычисляются: побли­зости от токов и зарядов или же вдали от них. Есть и промежуточная область, но о ней ничего интересного сказать нельзя; там никаких осо­бых явлений не происходит.

Но в электромагнетизме остается еще не­сколько вопросов, которые стоит осветить. Надо будет обсудить вопрос связи относитель­ности и уравнений Максвелла, т. е. выяснить, что произойдет, если на уравнения Максвелла посмотреть из движущейся системы координат. Важен еще и вопрос о сохранении энергии в электромагнитных системах. Кроме того, существует обширная область электромагнит­ных свойств материалов; до сих пор мы рас­сматривали только электромагнитные поля в пустом пространстве, если не считать изучения свойств диэлектриков. Да и при изучении света все еще оставалось несколько вопросов, которые хотелось бы рассмотреть еще раз с точки зре­ния уравнений поля.

В частности, надо бы еще раз вернуться к вопросу о показателе преломления (особенно у плотных веществ). Наконец, интересны яв­ления, связанные с волнами, заключенными внутри ограниченной области пространства. Мы кратко косну­лись этой проблемы, когда изучали звуковые волны. Но урав­нения Максвелла тоже приводят к решениям, которые пред­ставляют волны электрических и магнитных полей, замкнутые в некотором объеме. В одной из последующих глав мы рас­смотрим этот вопрос, имеющий важные технические примене­ния. И чтобы подойти к нему, мы начнем с того, что изложим свойства электрических цепей при низких частотах. После этого мы сможем сравнить такие системы, когда к уравнениям Максвелла применимо почти статическое приближение, и системы, в которых преобладают высокочастотные эффекты.

Итак, снизойдем с величественных и труднодоступных высот последних нескольких глав и обратим свой взор на сравнительно низменную задачу — задачу об электрических цепях. Впрочем, мы убедимся в том, что даже столь мирские дела оказываются весьма запутанными, если в них вникнуть достаточно глубоко.

В гл. 23 и 25 (вып. 2) мы уже обсуждали некоторые свойства электрических цепей (контуров). Теперь мы повторим часть из­ложенного там материала, но более подробно. Мы по-прежнему будем иметь дело с линейными системами и с напряжениями и токами, которые меняются синусоидально; поэтому мы можем представить все напряжения и токи в виде комплексных чисел, пользуясь экспоненциальными обозначениями, введенными в гл. 22 (вып. 2). Так, меняющееся во времени напряжение V(t) будет записываться в виде





(22.1)

где— комплексное число, не зависящее от t. При этом, ко­нечно, подразумевается, что настоящее переменное по времени напряжение V(t) представляется действительной частью комп­лексной функции в правой части уравнения.



Подобным же образом и все другие меняющиеся во времени величины будут считаться изменяющимися синусоидально с той же частотой w. Мы будем писать

(22.2)

и т. д.

Большей частью мы будем писать уравнения, пользуясь обозначениями V, I, e, ...



(вместо...), помня при этом, что они изменяются со временем всегда так, как в (22.2).

В прежних наших рассуждениях об электрических цепях мы полагали, что такие вещи, как индуктивность, емкость и со­противление, вам знакомы. Сейчас мы немного подробнее объясним, что понимают под этими идеализированными эле­ментами схем. Начнем с индуктивности.







Фиг. 22.1. Индуктивность.

Индуктивность — это навитая в несколько рядов проволока в форме катушки, два конца которой выведены к зажимам на некотором расстоянии от катушки (фиг. 22.1). Предположим, что магнитное поле, создаваемое токами в катушке, не очень рас­пространяется на все пространство и не воздействует на другие части цепи. Обычно этого добиваются, придав катушке форму лепешки или намотав ее на подходящий железный сердечник (это сжимает магнитное поле); можно еще поместить катушку внутрь металлической коробочки: схематически это показано на фиг. 22.1. В любом случае предполагается, что во внешней области у зажимов а и b магнитным полем можно пренебречь. Кроме того, мы будем считать, что электрическое сопротивление проводов в катушке можно не учитывать. И наконец, полагают, что можно пренебречь и электрическим зарядом, возникающим на поверхности провода, когда создаются электрические поля.





С учетом всех этих приближений и возникает то, что назы­вают «идеальной» индуктивностью. (Позже мы вернемся к этому пункту и поговорим о том, что бывает в реальных индуктивностях.) Про идеальную индуктивность говорят, что напряжение на ее зажимах равно L(dl/dt). Почему? Когда через индуктив­ность идет ток, то внутри катушки создается магнитное поле, пропорциональное силе тока. Если ток во времени меняется, то меняется и магнитное поле. Вообще говоря, ротор Е равен —dB/dt; можно сказать и по-другому: контурный интеграл от Е по любому замкнутому пути равен (с минусом) быстроте изме­нения потока В через контур. Представьте теперь себе следую­щий путь: начинается он на зажиме а и тянется вдоль катушки (оставаясь все время внутри провода) к зажиму b; затем воз­вращается от зажима b к а по воздуху в пространстве вне ка­тушки. Контурный интеграл от Е по этому замкнутому пути можно записать в виде суммы двух частей:

(22.3)



Как мы уже выяснили раньше, внутри идеального проводника электрических полей существовать не может. (Малейшие поля вызвали бы бесконечно большие токи.) Поэтому интеграл от зажима а до b через катушку равен нулю. Весь вклад в кон­турный интеграл от Е приходится на путь снаружи индуктив­ности, от зажима b к зажиму а. А так как было предположено, что в пространстве вне «коробки» нет никаких магнитных полей, то эта часть интеграла не зависит от выбора пути. Значит, можно определить понятие потенциала обоих зажимов. Разность этих двух потенциалов и есть то, что называют напряжением V, так что





Полный интеграл по контуру — это то, что мы раньше назы­вали э. д. с. e. Он, естественно, равен скорости изменения магнитного поля в катушке. Мы уже знаем, что эта э. д. с. равна (со знаком минус) быстроте изменения тока, так что



где L — индуктивность катушки. Поскольку dI/dt=iwI, то мы имеем





(22.4)

Тот способ, которым мы описали идеальную индуктивность, иллюстрирует общий подход к другим идеальным элементам цепи — обычно их называют «сосредоточенными» элементами. Свойства элемента полностью описываются на языке токов и напряжений, возникающих на его зажимах. Прибегнув к под­ходящим приближениям, можно игнорировать огромную слож­ность тех полей, которые возникают внутри объекта. То, что происходит внутри, отделяется от того, что происходит сна­ружи.

Для всех элементов цепи мы намерены сейчас найти соот­ношения, подобные формуле (22.4). В ней напряжение пропор­ционально силе тока с константой пропорциональности, кото­рая, вообще говоря, есть комплексное число. Этот комплексный коэффициент пропорциональности называется импедансом, и его привыкли обозначать через z (не следует путать с координатой z). В общем случае это функция частоты w. Стало быть, для каж­дого сосредоточенного элемента мы напишем





(22.5)



Для индуктивности мы имеем





(22.6)



Фиг. 22.2. Емкость (или конденсатор).

Рассмотрим с этой точки зрения емкость . Она состоит из двух проводящих пластин (обкладок), от которых к нужным за­жимам отходят два провода. Пластины могут быть любой формы и часто отделяются друг от друга каким-нибудь диэлектриком. Это схематически изображено на фиг. 22.2. Мы снова делаем несколько упрощающих предположений. Мы считаем, что пла­стины и провода — идеальные проводники, а изоляция между пластинами тоже идеальна, так что через нее никакие заряды с пластины на пластину перейти не могут. Затем мы предпола­гаем, что проводники находятся близко друг от друга, но зато аначительно удалены ото всех остальных проводников, так что все линии поля, выйдя из одной пластины, непременно окан­чиваются на другой. И тогда заряды на пластинах всегда равны и противоположны друг другу, причем по величине намного превосходят величину заряда на поверхности проводов. И на­конец, мы считаем, что поблизости от конденсатора магнитных полей нет.

Рассмотрим теперь контурный интеграл от Е вдоль замкну­той петли, которая начинается на клемме а, проходит внутри провода до верхней обкладки конденсатора, перескакивает про­межуток между пластинами, проходит с нижней обкладки на клемму b и возвращается к клемме а по пространству снаружи конденсатора. Раз магнитного поля нет, контурный интеграл от Е по этому замкнутому пути равен нулю. Интеграл можно раз­бить на три части:





Интеграл вдоль проводов равен нулю, потому что внутри идеаль­ных проводников электрического поля не бывает. Интеграл от зажима b до а снаружи конденсатора равен разности потенциалов между клеммами со знаком минус. А поскольку мы считаем, что обкладки как-то изолированы от прочего мира, то общий заряд двух обкладок должен быть равен нулю; и если на верх­ней обкладке есть заряд Q, то на нижней имеется заряд —Q. Раньше мы уже видели, что если заряды двух проводников рав­ны и противоположны, +Q и -Q, то разность потенциалов между ними есть Q/C, где С — емкость этих проводников. Из (22.7) следует, что разность потенциалов между зажимами а и b равна разности потенциалов между обкладками. Поэтому



Электрический ток I, втекающий в конденсатор через клемму а (и покидающий его через клемму b), равен dQ/dt — быстроте изменения электрического заряда на обкладках. Записывая dV/dt в виде iwV, можно связь между током и напряжением для конденсатора дать в следующем виде:





или





(22.8)

Тогда импеданс z конденсатора равен





(22.9)



Третий элемент, который нужно рассмотреть,— это сопро­тивление. Но, поскольку мы пока еще не рассматривали элек­трических свойств реальных веществ, мы не готовы обсуждать то, что творится внутри реального проводника. Придется просто принять как факт, что внутри реальных веществ могут суще­ствовать электрические ноля, что эти поля порождают поток электрического заряда (т. е. ток) и что этот ток пропорционален интегралу электрического поля от одного конца проводника до другого. Затем надо представить себе идеальное сопротивление, сделанное так, как показано на фиг. 22.3. Два провода, которые мы считаем идеальными проводниками, тянутся от клемм а и b к двум концам бруска, сделанного из материала, оказываю­щего сопротивление току. Следуя нашей обычной линии рас­суждений, приходим к выводу, что разность потенциалов между зажимами а и b равна контурному интегралу от внешнего элек­трического поля, равному также контурному интегралу от электрического поля по пути, проходящему через брусок.



Фиг. 22.3. Сопротивление.

От­сюда следует, что ток I через сопротивление пропорционален напряжению V на зажимах:



где R называется сопротивлением. Позже мы убедимся, что связь между силой тока / и напряжением V для реальных про­водящих материалов только приближенно можно считать ли­нейной. Мы убедимся также, что считать эту приближенную пропорциональность не зависящей от частоты изменений тока и напряжения можно лишь тогда, когда частота не слишком высо­ка. И тогда для переменных токов напряжение на зажимах ока­зывается в фазе с током, а это значит, что сопротивление — число действительное:



(22.10)

Результаты наших рассуждений о трех сосредоточенных эле­ментах цепи — индуктивности, емкости, сопротивлении — по­дытожены фиг. 22.4. На этом рисунке, как и на предыдущих, напряжение отмечено стрелкой, направленной от одной клеммы к другой. Если напряжение «положительно», т. е. если на клемме а потенциал выше, чем на клемме b, то стрелка указы­вает направление «падения напряжения».





Хотя мы сейчас говорим о переменных токах, конечно, можно включить сюда и особый случай цепей постоянного тока, если перейти к пределу, когда частота w стремится к нулю.



Фиг. 22.4. Идеальные сосредо­точенные элементы цепи (пассив­ные).

При нуле­вой частоте, т. е. при постоянном токе, импеданс индуктивности стремится к нулю; между клеммами наступает короткое замыка­ние. Импеданс же емкости при постоянном токе стремится к бес­конечности; цепь между клеммами размыкается. Принимать в расчет при постоянных токах нужно только обычные сопротив­ления: они не зависят от частоты.

В описанных до сих пор элементах цепи ток и напряжение были пропорциональны друг другу. Если одно равно нулю, то и другое равно нулю. Обычно мы мыслим на таком языке: при­ложенное напряжение «ответственно» за ток или ток «создает» напряжение на клеммах. Элемент словно в некотором смысле «отвечает» на «приложенные» внешние условия. По этой причи­не такие элементы называются пассивными. Тем самым их можно противопоставить активным элементам, таким, как генераторы, которые мы рассмотрим в следующем параграфе и которые пред­ставляют собой источники колебаний токов или напряжений в цепи.

§ 2. Генераторы

Поговорим теперь об активном элементе цепи, источнике и токов и напряжений в ней, т. е. о генераторе.

Пусть у нас имеется катушка, наподобие катушки самоин­дукции, но только витков у нее немного и на магнитное поле ее собственного тока можно внимания не обращать. Эта катуш­ка, однако, находится в переменном магнитном поле, подобном тому, какое создается вращающимся магнитом (фиг. 22.5). (Мы уже видели ранее, что такое вращающееся магнитное поле мож­но также создать с помощью подходящей совокупности катушек с переменными токами.) Сделаем снова несколько упрощающих допущений. Это все те же допущения, которые мы делали, гово­ря об индуктивности. В частности, мы предполагаем, что меняю­щееся магнитное поле ограничено лишь небольшой областью поблизости от катушки и за пределами генератора, в простран­стве



между клеммами, оно не чувствуется.





Фиг. 22.5. Генератор, состоя­щий из закрепленной катушки и вращающегося магнитного поля.



Фиг. 22.6. Обозначение идеального генератора.

Повторяя опять в точности тот же анализ, что и для индук­тивности, рассмотрим контурный интеграл от Е вдоль замкну­той петли, которая начинается на зажиме а, проходит по ка­тушке до зажима b и возвращается к началу по пространству между зажимами. Снова заключаем, что разность потенциалов между зажимами а и b равна всему интегралу от Е вдоль петли:









Этот контурный интеграл равен э.д.с. в цепи, и поэтому разность потенциалов V между выводами генератора тоже равна скорости изменения магнитного потока сквозь катушку:

(22.11)

Предполагается далее, что у идеального генератора магнитный поток через катушку определяется внешними условиями (таки­ми, как угловая скорость вращающегося магнитного поля) и что на него никак не влияют токи, текущие через генератор. Таким образом, генератор (по крайней мере рассматриваемый нами идеальный) — это не импеданс. Разность потенциалов на его зажимах определяется произвольно задаваемой э.д.с. e(t). Такой идеальный генератор представляют символом, по­казанным на фиг. 22.6. Маленькая стрелка дает направление по­ложительной э.д.с. Положительная э.д.с. в генераторе, изобра­женном на фиг. 22.6, создает напряжение V=e с более высоким потенциалом на зажиме а.

Можно сделать генератор и по-другому. Внутри он будет уст­роен совершенно иначе, но снаружи, на зажимах, он ничем не будет отличаться от только что описанного. Представим катуш­ку, которая вращается в неподвижном магнитном поле (фиг.22.7).

Мы изобразили магнитную палочку, чтобы показать наличие магнитного поля, но его можно, конечно, заменить любым дру­гим источником постоянного магнитного поля, скажем добавоч­ной катушкой, по которой течет постоянный ток. Как показано на рисунке, вращающаяся катушка связана с внешним миром скользящими контактами, или «кольцами». Нас опять интересу­ет разность потенциалов, которая появляется между клеммами а и b, т. е. интеграл от электрического поля между а и b по пути снаружи генератора.

Теперь в этой системе уже нет изменяющихся магнитных по­лей и на первый взгляд кажется удивительным, откуда на зажи­мах генератора берется напряжение. Действительно, ведь нигде же внутри генератора нет никаких электрических полей. Мы, как обычно, предполагаем для наших идеальных элементов, что внутри них провода сделаны из идеально проводящего материа­ла; а, как уже неоднократно повторялось, электрическое поле внутри идеального проводника равно нулю. Но это не всегда верно. Это неверно тогда, когда проводник движется в магнитном поле. Правильное утверждение таково: общая сила, действую­щая на произвольный заряд внутри идеального проводника, должна быть равна нулю. Иначе в нем возник бы бесконечный ток свободных зарядов. Так что надо брать сумму электрическо­го поля Е и векторного произведения скорости проводника v на магнитное поле В; это есть полная сила, действующая на еди­ничный заряд, и вот она-то всегда равна нулю:

F=E+vXB=0 (в идеальном проводнике). (22.12)

А наше прежнее утверждение о том, что внутри идеальных про­водников электрических полей не бывает, верно лишь тогда, когда скорость проводника v равна нулю; в противном случае справедливо выражение (22.12).

Вернемся к нашему генератору, показанному на фиг. 22.7. Теперь мы видим, что контурный интеграл от электрического поля Е между зажимами а и b по проводящим путям генерато­ра должен быть равен контурному интегралу от vXB по тому же пути;









Фиг. 22.7. Генератор, состоящий из катушки, вращающейся в неподвиж­ном магнитном поле.



Однако по-прежнему остается верным, что контурный интеграл от Е по замкнутой петле, включая возвращение от зажима b к а вне генератора, должен быть равен нулю, потому что меняю­щиеся магнитные поля отсутствуют. Так что первый интеграл в (22.13) по-прежнему равен V — напряжению на зажимах. Ока­зывается, что интеграл в правой части (22.13) просто равен быст­роте изменения потока через катушку, а значит, по правилу по­тока, равен э.д.с. катушки. И опять получается, что разность потенциалов между зажимами равна э.д.с. цепи в согласии с уравнением (22.11). Так что все равно, какой у нас генератор: меняется ли в нем магнитное поле возле закрепленной катушки, вертится ли в закрепленном магнитном поле катушка,— внешние свойства генераторов одни и те же. На клеммах всегда сущест­вует напряжение V, которое не зависит от тока в цепи, а опреде­ляется только условиями внутри генератора, формируемыми по нашему произволу.

Поскольку мы пытаемся понять работу генератора, основы­ваясь на уравнениях Максвелла, может возникнуть вопрос об обычном химическом элементе, о батарейке для карманного фо­нарика. Это тоже генератор, т. е. источник напряжения, хотя и применяется он только в цепях постоянного тока. Проще всего разобраться в элементе, изображенном на фиг. 22.8. Представьте две металлические пластинки, погруженные в какой-то химиче­ский раствор. Пусть раствор содержит в себе положительные и отрицательные ионы. Мы предположим еще, что ионы одного сорта, ска­жем отрицательные, много массивнее ионов, имеющих противоположную полярность, так что их движение в растворе (диффузия) происходит намного медленнее.







Фиг. 22.8. Химический элемент.

Наконец, положим, что тем или иным способом удалось добиться изменения кон­центрации раствора от места к месту, так что число ионов обеих полярностей, скажем у нижней пластинки, становится намного больше концентрации ионов у верхней пластинки. Благодаря большей подвижности положительные ионы легче проникнут в область низких концентраций, так что будет наблюдаться легкий избыток положительных зарядов, достигающих верхней плас­тинки. Она зарядится положительно, а нижняя будет обладать избытком отрицательного заряда. По мере того как все боль­ше и больше зарядов диффундирует к верхней пластинке, по­тенциал ее будет расти, пока возникающее между пластинками электрическое поле не создаст силу, действующую на ионы, которая компенсирует их избыточную подвижность. Два элек­трода быстро достигают разности потенциалов, характерной для внутреннего устройства этого элемента.

Рассуждая так же, как это мы делали, когда говорили об идеальном конденсаторе, мы убедимся, что, если нет избытка диффузии ионов какого-либо знака, разность потенциалов меж­ду зажимами а и b равна просто контурному интегралу от элект­рического поля между электродами. Конечно, между конденса­тором и таким химическим элементом есть существенная разни­ца. Если на мгновение закоротить выводы конденсатора, он разрядится и разности потенциалов между выводами уже не будет. В случае же химического элемента ток с зажимов можно снимать непрерывно, никак не изменяя при этом э.д.с., пока, конечно, реактивы в элементе не израсходуются. Известно, что в реальном элементе разность потенциалов на зажимах убывает по мере возрастания снимаемого с него тока. Но при нашей идеализации задачи легко себе представить, что у нас есть идеальный элемент, в котором напряжение на электродах не зависит от силы тока. Тогда реальный элемент можно рассма­тривать как идеальный, соединенный последовательно с сопро­тивлением.

§ 3. Сети идеальных элементов; правила Кирхгофа

Как мы видели в предыдущем параграфе, очень просто опи­сывать идеальные элементы схем, говоря лишь о том, что про­исходит вне элемента. Ток и напряжение связаны линейно. Но очень сложно описать все то, что на самом деле происходит внутри элемента, и весьма трудно при этом пользоваться языком уравнений Максвелла. Представьте, что вам нужно точно опи­сать электрические и магнитные поля внутри радиоприемника, состоящего из сотен сопротивлений, емкостей и самоиндукций







Фиг. 22.9. Сумма падений напряжения вдоль любого замкнутого пути равна нулю.

Было бы непосильным делом проана­лизировать такую мешанину, поль­зуясь уравнениями Максвелла. Но, делая множество приближений, ко­торые мы описали в § 2, и переводя существенные черты реальных эле­ментов схем на язык идеализации, можно проанализировать электриче­скую цепь сравнительно просто. Сей­час мы покажем, как это делается. Пусть имеется цепь, которая со­стоит из генератора и нескольких импедансов, между собой так, как показано на фиг. 22.9. Согласно нашим приближениям, в областях между отдельными элементами цепи магнитного поля нет. Поэтому ин­теграл от Е вдоль любой кривой, которая не проходит ни через один из элементов, равен нулю. Рассмотрим кривую Г, показан­ную штрихом на фиг. 22.9, которая обходит по цепи кругом. Контурный интеграл от Е вдоль этой кривой состоит из несколь­ких частей. Каждая часть — это интеграл от одного зажима элемента цепи до следующего. Мы назвали этот контурный ин­теграл падением напряжения на элементе цепи. Тогда весь контурный интеграл равен просто сумме падений напряжения на всех элементах цепи порознь:









А поскольку контурный интеграл равен нулю, то получается, что сумма разностей потенциалов вдоль всего замкнутого кон­тура цепи равна нулю:

(22.14)

Этот результат следует из одного из уравнений Максвелла, ут­верждающего, что в области, где нет магнитных полей, криволи­нейный интеграл от Е по замкнутому контуру равен нулю. Теперь рассмотрим другую цепь (фиг. 22.10). Горизонталь­ная линия, соединяющая выводы а, b, с и d, нарисована для того, чтобы показать, что эти выводы все связаны менаду собой или что они соединяются проводами с ничтожным сопротивлением. Во всяком случае такой чертеж означает, что все выводы а, b, с, d находятся под одним потенциалом, а выводы е, f, g и h — тоже под одним. Тогда падение напряжения V на любом из четырех элементов одинаковое.





Но одна из наших идеализации состояла в том, что на вы­водах импедансов сосредоточиваются пренебрежимо малые количества электричества. Предположим теперь, что и электри­ческим зарядом, накапливаемым на соединительных проводах, тоже можно пренебречь. Тогда сохранение заряда требует, чтобы любой заряд, покинувший один из элементов цепи, не­медленно входил в какой-либо другой элемент цепи. Или, что то же самое, чтобы алгебраическая сумма токов, входящих в лю­бую из точек соединения, была равна нулю. Под точкой соеди­нения мы понимаем любую совокупность выводов, таких, как а, b, с, d, которые соединены друг с другом. Такая совокуп­ность соединенных между собой выводов обычно называется «узлом». Сохранение заряда, стало быть, требует, чтобы в цепи, показанной на фиг. 22.10, было

(22.15)



Сумма токов, входящих в узел, состоящий из четырех выводов е, f, g, h, тоже должна быть равна нулю:

(22.16)



Ясно, что это то же самое уравнение, что и (22.15). Оба эти уравнения не независимы. Общее правило гласит, что сумма то­ков, втекающих в любой узел, обязана быть равна нулю:

(22.17)



Наше прежнее заключение о том, что сумма падений напря­жений вдоль замкнутого контура равна нулю, должно выпол­няться для каждого контура сложной цепи. Точно так же наш результат, что сумма сил токов, втекающих в узел, равна нулю, тоже должен выполняться для любого узла. Эти два уравнения известны под названием пра­вил Кирхгофа.



Фиг, 22.10. Сумма токов, вхо­дящих в любой узел, равна нулю.







Фиг. 22.11. Анализ цепи с помощью правил Кирхгофа.

С их помощью можно найти силы токов и напряжения в какой угодно цепи.

Рассмотрим, например, цепь посложнее (фиг. 22.11). Как определить токи и напряжения в ней? Прямой путь решения таков. Рассмотрим каждый из четырех вспомогательных контуров цепи. (Скажем, один контур проходит через клеммы а, b, е, d и обратно к а.) Для каждого замкнутого контура напишем уравнение первого правила Кирхгофа — сумма падений напряжения вдоль вся­кого контура равна нулю. Нужно помнить, что падение напряжения считается положительным, если направление об­хода совпадает с направлением тока, и отрицательным, если на­правление обхода противоположно направлению тока; и надо еще помнить, что падение напряжения на генераторе равно от­рицательному значению э.д.с. в этом направлении. Так что для контура abeda получается

z1I1+ z3I3+z4I4-e1=0.

Прилагая те же правила к остальным контурам, получим еще три сходных уравнения.

После этого нужно написать уравнения для токов в каждом узле цепи. Например, складывая все токи в узле b, получаем

I1-I3-I2=0.

Аналогично, в узле е уравнение для токов принимает вид

I3-I4+I8-I5=0.

В изображенной схеме таких уравнений для токов пять. Ока­зывается, однако, что любое из этих уравнений можно вывести из остальных четырех, поэтому независимых уравнений только четыре. Итого в нашем распоряжении восемь независимых ли­нейных уравнений: четыре для напряжений, четыре для токов. Из них можно получить восемь независимых токов. А если станут известны токи, то определится и вся цепь. Падение напряжения на любом элементе дается током через этот элемент, умноженным на его импеданс (а для источников напряжения они вообще известны заранее).

Мы видели, что одно из уравнений для тока зависит от ос­тальных. Вообще-то уравнений для напряжения тоже можно написать больше, чем нужно. Хотя в схеме фиг. 22.11 и рас­сматривалась только четверка самых маленьких контуров, но ничего не стоило взять другие контуры и выписать для них уравнения для напряжений. Можно было взять, скажем, путь abcfeda. Или сделать обход по пути abcfehgda. Вы видите, что контуров — множество. И, анализируя сложные схемы, ничего не стоит получить слишком много уравнений. Но хоть есть пра­вила, которые подсказывают, как надо поступать, чтобы вышло наименьшее количество уравнений, обычно и так бывает сразу понятно, как выписать нужное число простейших уравнений. Кроме того, одно-два лишних уравнения вреда не приносят. К неверному ответу они не приведут, разве только немного запу­тают выкладки.

В гл. 25 (вып. 2) мы показали, что, если два импеданса z1 и z2 соединены последовательно, они эквивалентны одиночному импедансу zs, равному

zs = zl + z2. (22.18)

Кроме того, было показано, что, когда два импеданса соединены параллельно, они эквивалентны одиночному импедансу zp , равному





(22.19)

Если вы теперь оглянетесь назад, то увидите, что, выводя эти результаты, на самом деле вы пользовались правилами Кирх­гофа. Часто можно проанализировать сложную схему, повторно применяя формулы для последовательного и параллельного импедансов.









Фиг. 22.12, Цепь, которую мож­но проанализировать с помощью последовательных и параллель­ных комбинаций.



Фиг. 22,13. Цепь, кото­рую нельзя проанализи­ровать с помощью последовательных и параллельных комбинаций.

Скажем, таким способом можно проанализировать схему, показанную на фиг. 22.12. Импедансы z4 и z5 можно заменить их параллельным эквивалентом, то же можно сделать с импедансами z6 и z7. Затем импеданс z2 можно скомбинировать с параллельным эквивалентом z6 и z7, по правилу последова­тельного соединения импедансов. Так постепенно можно свести всю схему к генератору, последовательно соединенному с одним импедансом Z. И тогда ток через генератор просто равен e/Z. А действуя в обратном порядке, можно найти токи в каждом импедансе.

Однако бывают совсем простые схемы, которые этим методом не проанализируешь. Например, схема фиг. 22.13. Чтобы проанализировать эту цепь, надо расписать уравнения для токов и напряжений по правилам Кирхгофа. Давайте проделаем это. Имеется только одно уравнение для токов:

I1 + I2 + I3=0, откуда

I3=-(I1+I2).

Выкладки можно сэкономить, если этот результат сразу же подставить в уравнения для напряжений. В этой схеме таких уравнений два:

-El + I2z2-Ilzl=0 и Ј2-(Il + I2)z3-I2z2=0.

На два уравнения приходится два неизвестных тока. Решая их, получаем 11 и I2:





(22.20)



и

(22.21)

А третий ток получается как сумма первых двух.

Вот еще пример цепи, которую по правилам параллель­ных и последовательных импедансов рассчитывать нельзя



Фиг. 22.14. Мостиковая схема.

(фиг. 22.14). Такую схему на­зывают «мостик». Она встре­чается во многих приборах, измеряющих импедансы. В таких схемах обычно инте­ресуются таким вопросом:

как должны соотноситься различные импедансы, чтобы ток че­рез импеданс zs был равен нулю? Вам предоставляется право найти те условия, при которых это действительно так,

§ 4. Эквивалентные контуры

Положим, мы подключили генератор Ј к цепи, в которой есть множество сложных переплетений импедансов (схематиче­ски это показано на фиг. 22.15, а). Все уравнения, вытекающие из правил Кирхгофа, линейны, и поэтому, вычислив из них ток I через генераторы, мы получим величину I, пропорциональную e. Можно написать





где теперь zэфф— это некоторое комплексное число, алгебраиче­ская функция всех элементов цепи. (Если в цепи нет никаких

генераторов, кроме упомянутого, то в формуле не будет добавочной части, не зависящей от e.) Но получившееся уравнение — это как раз то, которое нужно было бы написать для схемы фиг. 22.15, б. И покуда нас интересует только то, что происходит слева от за­жимов а и b, до тех пор обе схемы фиг. 22.15 эквивалентны.







Фиг. 22.15. Любая сеть пассивных элементов с двумя выводами эквивалентна эффективному импедансу.



Фиг. 22.16. Любую сеть с двумя выводами можно заменить генератором, последовательно соединенным с импедансом.

И поэтому можно сделать общее утверждение, что любую цепь пассивных элементов с двумя выводами можно заменить одним-единственным импедансом zэфф не изменив в остальной части цепи ни токов, ни напряжений. Утверждение это, естественно, всего лишь мелкое замечание о том, что следует из правил Кирхгофа, а в конечном счете — из ли­нейности уравнений Максвелла.





Идею эту можно обобщить на схемы, в которые входят как генераторы, так и импедансы. Представьте, что мы глядим на эту схему «с точки зрения» одного из импедансов, который мы обозначим zn (фиг. 22.16, а). Если бы решить уравнение для то­ка, мы бы увидели, что напряжение Vn между зажимами а и b есть линейная функция I, которую можно записать в виде

(22.22)



Здесь А и В зависят от генераторов и импедансов в цепи слева от зажимов. Например, в схеме, показанной на фиг. 22.13, мы находим V1=I1zl . Это можно переписать [используя (22.20)] в виде

(22.23)

Тогда полное решение мы получаем, комбинируя это урав­нение с уравнением для импеданса z1 т. е. с V1=I1z1, или в общем случае комбинируя (22.22) с









Если мы рассмотрим теперь случай, когда zn подключается к простой цепи из последовательно соединенных генератора и импеданса (см. фиг. 22.15, б), то уравнение, соответствующее (22.22), примет вид



что совпадает с (22.22), если принять Sэфф=A и zэфф=B. Значит, если нас интересует лишь то, что происходит направо от выводов а и b, то произвольную схему фиг. 22.16 можно всегда заменить эквивалентным сочетанием генератора, последовательно соеди­ненного с импедансом.

§ 5. Энергия

Мы видели, что для создания в индуктивности тока I надо из внешней цепи доставить энергию U=1/2LI2. Когда ток спадает до нуля, эта энергия уводится обратно во внешнюю цепь.

В идеальной индуктивности механизма потерь энергии нет. Когда через индуктивность течет переменный ток, энергия пере­текает то туда, то сюда — от индуктивности к остальной части цепи и обратно, но средняя скорость, с какой энергия передается в цепь, равна нулю. Мы говорим, что индуктивность — недиссипативный элемент, в ней не растрачивается (не «диссипирует») электрическая энергия.

Точно так же возвращается во внешнюю цепь и энергия кон­денсатора U=1/2СV2, когда он разряжается. Когда он стоит в цепи переменного тока, то энергия течет то в него, то из него, но полный поток энергии за каждый цикл равен нулю. Идеальный конденсатор — тоже недиссипативный элемент.

Мы знаем, что э. д. с.— это источник энергии. Когда ток I течет в направлении э.д.с., то энергия поставляется во внешнюю цепь со скоростью dU/dt=eI. Если электричество гонят против э.д.с. (с помощью других генераторов), то э. д. с. поглощает энергию со скоростью eI; поскольку I отрицательно, то и dU/dt отрицательно.

Если генератор подключен к сопротивлению R, то ток через сопротивление равен I=e/R. Энергия, поставляемая генерато­ром со скоростью eI, поглощается сопротивлением. Эта энер­гия тратится на нагрев сопротивления и для электрической энергии цепи фактически уже потеряна. Мы говорим, что электрическая энергия рассеивается, диссипирует в сопротивлении. Скорость, с какой она рассеивается, равна dU/dt=RI2.





В цепи переменного тока средняя скорость потерь энергии в сопротивлении — это среднее значение RI2 за цикл. Поскольку I=I\'eiwt (что, собственно, означает, что I меняется как coswt), то среднее значение I2 за цикл равно |I\'|2/2, потому что ток в максимуме — это |I\'[, а среднее значение cos2 cat равно 1/2.



Фиг. 22.17. Любой импеданс эквивалентен последовательному соединению чистого сопротивле­ния и чистого реактанса.

А что можно сказать о потерях энергии, когда генератор подключен к произвольному импедансу z? (Под «потерями» мы, конечно, понимаем превращение электрической энергии в теп­ловую.) Всякий импеданс z может быть разбит на действитель­ную и мнимую части, т. е.

z = R + iX, (22.24)

где R и X — числа действительные. С точки зрения эквивалент­ных схем можно сказать, что всякий импеданс эквивалентен сопротивлению, последовательно соединенному с чисто мни­мым импедансом, называемым реактансом

(фиг. 22.17).

Мы уже видели раньше, что любая цепь, содержащая только L и C, обладает импедансом, выражаемым чисто мнимым числом. А раз в любом из L и С в среднем никаких потерь не бывает, то и в чистом реактансе, в котором имеются только L и С, по­терь энергии не бывает. Можно показать, что это должно быть верно для всякого реактанса.

Если генератор с э. д. с. e подсоединен к импедансу z (см. фиг. 22.17), то его

э. д. с. должна быть связана с током I из генератора соотношением

e = I(R + iX). (22.25)

Чтобы найти, с какой средней скоростью подводится энергия, нужно усреднить произведение eI. Но теперь следует быть ос­торожным. Оперируя с такими произведениями, надо иметь дело только с действительными величинами e(t) и I(t). (Дейст­вительные части комплексных функций изображают настоящие физические величины только тогда, когда уравнения линейны; сейчас же речь идет о произведении, а это, несомненно, вещь нелинейная.)

Пусть мы начали отсчитывать t так, что амплитуда I\' оказа­лась действительным числом, скажем I0; тогда истинное изме­нение I во времени дается формулой

I=I0coswt.

.



Входящая в уравнение (22.25) э.д.с.— это действительная часть







или

(22.26)

Два слагаемых в (22.26) представляют падение напряжений на R и X (см. фиг. 22.17). Мы видим, что падение напряжения на сопротивлении находится в фазе с током, тогда как падение напряжения на чисто реактивной части находится с током в противофазе.

Средняя скорость потерь энергии <Р>ср, текущей от гене­ратора, есть интеграл от произведения eI за один цикл, делен­ный на период Т; иными словами,