Глава 5
ЗАКОНА ГАУССА ПРИМЕНЕНИЯ
§ 1.Электростатика— это есть закон Гаусса плюс...
§2.Равновесие в электростатическом поле
§3. Равновесие с проводниками
§4. Устойчивость атомов
§5.Поле заряженной прямой линии
§6. Заряженная плоскость; пара плоскостей
§7.Однородно заряженный шар; заряженная сфера
§8.Точен ли закон Кулона?
§9. Поля проводника
§10.Поле внутри полости проводника
§ 1. Электростатика—это есть закон Гаусса плюс...
Существуют два закона электростатики: поток электрического поля из объема пропорционален заряду внутри него — закон Гаусса, и циркуляция электрического поля равна нулю — Е есть градиент. Из этих двух законов следуют все предсказания электростатики. Но одно дело высказать эти вещи математически, и совсем другое — применять их с легкостью и с нужной долей остроумия. В этой главе мы будем заниматься только такими расчетами, которые могут быть проделаны непосредственно на основе закона Гаусса. Мы докажем некоторые теоремы и опишем некоторые эффекты (в частности, в проводниках), которые на основе закона Гаусса очень легко понять. Сам по себе закон Гаусса не может дать решения ни одной задачи, потому что должны быть выполнены и какие-то другие законы. Значит, применяя закон Гаусса к решению частных задач, нужно всегда к нему что-то добавлять. Мы должны, например, заранее делать какие-то предположения о том, как выглядит поле, основываясь, скажем, на соображениях симметрии. Или должны будем особо вводить представление о том, что поле есть градиент потенциала.
§ 2. Равновесие в электростатическом поле
Рассмотрим сначала следующий вопрос: в каких условиях точечный заряд может пребывать в механическом равновесии в электрическом поле других зарядов? В качестве примера представим себе три отрицательных заряда в вершинах равностороннего треугольника, расположенного в горизонтальной плоскости.
Фиг. 5.1. Если бы точка Р0 отмечала положение устойчивого равновесия положительного заряда, то электрическое поле повсюду в ее окрестности было бы направлено к Р0 .
Останется ли на своем месте положительный заряд, помещенный в центр треугольника? (Для простоты тяжестью пренебрежем; но и учет ее влияния не изменит выводов.) Сила, действующая на положительный заряд, равна нулю, но устойчиво ли это равновесие? Вернется ли заряд в положение равновесия, если его чуть сдвинуть с этого места? Ответ гласит: нет.
Ни в каком электростатическом поле не существует никаких точек устойчивого равновесия, за исключением случая, когда заряды сидят друг на друге. Применяя закон Гаусса, легко понять почему. Во-первых, чтобы заряд пребывал в равновесии в некоторой точке Р0, поле в ней должно быть равно нулю. Во-вторых, чтобы равновесие было устойчивым, требуется, чтобы смещение заряда из Р0 в любую сторону вызывало восстанавливающую силу, направленную против смещения. Векторы электрического поля во всех окрестных точках должны показывать внутрь — на точку Р0 . Но как легко видеть, это нарушает закон Гаусса, если в Р0 нет заряда.
Возьмем небольшую воображаемую поверхность, окружающую точку Р0 (фиг. 5.1). Если повсюду вблизи Р0 электрическое поле направлено к Р0, то поверхностный интеграл от нормальной составляющей определенно не равен нулю. В случае, изображенном на фигуре, поток через поверхность должен быть отрицательным числом. Но, согласно закону Гаусса, поток электрического поля сквозь любую поверхность пропорционален количеству заряда внутри нее. Если в Р0 нет заряда, то изображенное нами поле нарушит закон Гаусса. Уравновесить положительный заряд в пустом пространстве, в точке, в которой нет какого-нибудь отрицательного заряда, невозможно. Но если положительный заряд размещен в центре распределенного отрицательного заряда, то он может находиться в равновесии. Конечно, распределение отрицательного заряда должно само удерживаться на своем месте посторонними, неэлектрическими силами!
Этот вывод мы проделали для точечного заряда. Соблюдается ли он для сложной расстановки зарядов, относительное расположение которых чем-то фиксировано (скажем, стержнями)? Разберем этот вопрос на примере двух одинаковых зарядов, закрепленных на стержне. Может ли эта комбинация в каком-то электрическом поле застыть в равновесии?
Фиг. 5.2. Заряд может быть в равновесии, если имеются механические ограничения.
И опять ответ гласит: нет. Суммарная сила, действующая на стержень, не способна возвращать его к положению равновесия при любых направлениях смещения.
Обозначим суммарную силу, действующую на стержень \' в любом положении, буквой F. Тогда F — это векторное поле. Повторяя те же рассуждения, что и выше, мы придем к заключению, что в положении устойчивого равновесия дивергенция F должна быть числом отрицательным. Но суммарная сила, действующая на стержень, равна произведению первого заряда на поле в том месте, где он находится, плюс произведение второго заряда на поле в том месте, где он находится:
(5.1)
Дивергенция F дается выражением
Если каждый из двух зарядов q1 и q2 находится в свободном пространстве, то и С·Е1, и С·Е2 равны нулю, и С·F тоже нуль, а не отрицательное число, как должно было бы быть при равновесии. Дальнейшее расширение этого доказательства покажет, что никакая жесткая комбинация любого числа зарядов не способна замереть в положении устойчивого равновесия в электростатическом поле в пустом пространстве.
Но мы не собираемся доказывать, что если заряд может скользить по стержням или опираться на другие механические связи, то равновесие все равно невозможно. Это не так. Возьмем для примера трубку, в которой заряд может свободно двигаться вперед и назад (но не в сторону). Теперь легко устроить электрическое поле, которое на концах трубки направлено внутрь нее (при этом близ центра трубки ему разрешается быть направленным наружу, в сторону). Для этого надо просто поместить по положительному заряду на каждом конце трубки (фиг. 5.2). Теперь точка равновесия существует даже в том случае, когда дивергенция Е равна нулю. Конечно, заряд не оказался бы в устойчивом равновесии, если бы не «неэлектрические» силы от стенок трубки.
§ 3. Равновесие с проводниками
В системе закрепленных зарядов устойчивого места для пробного заряда нет. А как обстоит дело с системой заряженных проводников? Может ли система заряженных проводников создать поле, в котором для точечного заряда хоть где-нибудь найдется устойчивое местечко? (Конечно, имеется в виду не место на поверхности проводника.) Вы знаете, что проводники характерны тем, что заряды по ним могут двигаться свободно. Может быть, если чуть сдвинуть точечный заряд, то прочие заряды на проводниках так сместятся, что на точечный заряд начнет действовать восстанавливающая сила? Ответ по-прежнему отрицательный, хотя из приведенного нами доказательства этого вовсе не следует. В этом случае доказательство сложнее, и мы только наметим его ход.
Во-первых, мы замечаем, что когда заряды перераспределяются по проводникам, то это возможно только тогда, когда от их движения их суммарная потенциальная энергия сокращается. (Часть их энергии, когда они движутся по проводнику, переходит в тепло.) А мы уже показали, что когда заряды, создающие поле, стационарны, то вблизи любой точки Р0, в которой поле равно нулю, существует направление, в котором смещение точечного заряда из Р0 уменьшит энергию системы (так как сила направлена от Р0). Любое перемещение зарядов по проводникам может только еще больше снизить их потенциальную энергию, так что (по принципу виртуальной работы) их движение только увеличит силу в этом указанном направлении, но никак не обратит ее знак.
Наши слова не означают, что заряд невозможно уравновесить электрическими силами. Это можно сделать, если специальными устройствами контролировать расположение или размер поддерживаемых зарядов. Вы же знаете, что стержень, стоящий в гравитационном поле на своем нижнем конце, неустойчив, но отсюда не следует, что его нельзя уравновесить на кончике пальца. Точно так же и заряд можно удержать на одном месте с помощью одних только электрических сил, если вовремя изменять эти силы. Но этого нельзя сделать с помощью пассивной, т. е. статической, системы сил.
§ 4. Устойчивость атомов
Раз заряды не могут иметь устойчивого положения, то, разумеется, неправильно представлять вещество построенным из статических точечных зарядов (электронов и протонов), управляемых только законами электростатики. Такая статическая конфигурация немыслима, она обвалится!
Фиг. 5.3. Томсоновская модель атома.
1 — однородно распределенный положительный заряд; 2 — отрицательный заряд, сконцентрированный в центре.
В свое время предлагалось считать положительный заряд атома распределенным однородно по шару, а отрицательные заряды (электроны) покоящимися внутри положительного заряда (фиг. 5.3). Это была первая атомная модель, предложенная Томсоном. Но Резерфорд из опыта, проделанного Гейгером и Марсденом, сделал вывод, что положительные заряды очень сильно сконцентрированы и образуют то, что мы называем ядром. И статическую модель Томсона пришлось отставить. Затем Резерфорд и Бор предположили, что равновесие может быть динамическим — электроны обращаются по орбитам (фиг. 5.4). Орбитальное движение в этом случае удерживало бы электроны от падения на ядро. Но мы с вами знакомы, по крайней мере, с одной трудностью, возникающей и при таком представлении об атоме. При движении по орбитам электроны ускоряются (из-за вращательного движения), и поэтому они излучали бы энергию. При этом они потеряют кинетическую энергию, необходимую для того, чтобы остаться на орбитах, и они должны будут падать, двигаясь по спирали, на ядро. Опять неустойчивость!
Сейчас стабильность атома объясняется с помощью квантовой механики. Электростатические силы притягивают электрон к ядру насколько это возможно, но электрон вынужден оставаться размазанным в пространстве на расстоянии, диктуемом принципом неопределенности. Если бы он держался в очень узком пространстве близ ядра, у него была бы большая неопределенность в импульсе. Но это означало бы, что его ожидаемая энергия высока и может быть использована для того, чтобы разорвать электрическое притяжение ядра.
Фиг. 5.4. Модель атома Резерфорда—Бора.
1 — положительные ядра в центре;
2 — отрицательные электроны на планетных орбитах.
Выходит, что в итоге электрическое равновесие не слишком отличается от идеи Томсона, но только на этот раз размазан отрицательный заряд (потому что масса электрона несравненно меньше массы протона).
§ 5. Поле заряженной прямой линии
Закон Гаусса может быть применен для решения множества задач, связанных с электрическим полем, обладающим специальной симметрией (чаще всего сферической, цилиндрической или плоской). В оставшейся части этой главы мы займемся применением закона Гаусса к некоторым задачам подобного рода. Легкость, с которой будут решаться эти задачи, может создать ошибочное впечатление о мощи метода и о возможности с его помощью перейти к решению многих других задач. К сожалению, это не так. Список задач, легко решаемых по закону Гаусса, быстро исчерпывается. В дальнейших главах мы разовьем куда более мощные методы исследования электростатических полей.
В качестве первого примера рассмотрим систему с цилиндрической симметрией. Пусть у нас имеется длинная-длинная равномерно заряженная спица. Под этим мы понимаем электрические заряды, равномерно распределенные по длине бесконечно длинной прямой, так что на единицу длины приходится заряд l,. Мы хотим определить электрическое поле. Конечно, задачу можно решить интегрированием вкладов в поле от всех частей прямой. Но мы собираемся решить ее без интегрирования, только с помощью закона Гаусса и некоторых догадок. Во-первых, легко догадаться, что электрическое поле будет направлено по радиусу. Любой осевой составляющей от зарядов, лежащих с одной стороны от некоторой плоскости, должна отвечать такая же осевая составляющая от зарядов, лежащих с другой стороны. В итоге должно остаться только радиальное поле. Кроме того, резонно полагать, что во всех точках, равноотстоящих от прямой, поле имеет одинаковую величину. Это очевидно.
Фиг. 5.5. Цилиндрическая гауссова поверхность, коаксиальная заряженной прямой.
1 — гауссова поверхность; 2 — заряженная прямая.
(Может быть, это нелегко доказать, но это верно, если пространство симметрично, а мы считаем, что это так.) Применить закон Гаусса можно следующим образом. Вообразим себе поверхность, имеющую форму цилиндра, ось которого совпадает с нашей прямой (фиг. 5.5). Согласно закону Гаусса, весь поток Е из этой поверхности равен заряду внутри нее, деленному на e0. Раз поле считается нормальным к поверхности, то его нормальная составляющая — это величина вектора поля. Обозначим ее Е. Пусть радиус цилиндра будет r, а длина его для удобства выбрана равной единице. Поток сквозь цилиндрическую поверхность равен произведению Е на площадь поверхности, т. е. на 2pr. Поток через торцы равен нулю, потому что поле касательно к ним. Весь заряд внутри нашей поверхности равен как раз l, потому что длина оси цилиндра равна единице. Тогда закон Гаусса дает
(5.2)
Электрическое поле заряженной прямой обратно пропорционально первой степени расстояния от прямой.
§ 6. Заряженная плоскость; пара плоскостей
В качестве другого примера рассчитаем поле однородно заряженного плоского листа. Предположим, что лист имеет бесконечную протяженность и заряд на единицу площади равен а. Сразу приходит в голову следующее соображение: из симметрии следует, что поле направлено всюду поперек плоскости, и если не существует поля от всех прочих зарядов в мире, то поля по обе стороны плоскости должны совпадать (по величине). На этот раз за гауссову поверхность мы примем прямоугольный ящик, пересекающий нашу плоскость (фиг. 5.6). Каждая из граней, параллельных плоскости, имеет площадь А. Поле нормально к этим двум граням и параллельно остальным четырем. Суммарный поток равен Е, умноженному на площадь первой грани, плюс Е, умноженному на площадь противоположной грани; от остальных граней никаких слагаемых
не войдет. Заряд внутри ящика равен sА. Уравнивая поток с зарядом, напишем
откуда
(5.3)
Простой, но важный результат.
Фиг. 5.6. Электрическое поле возле однородно заряженной плоскости, найденное с помощью теоремы Гаусса, применяемой к воображаемому ящику.
1 — однородно заряженная плоскость;
2 — гауссова поверхность.
Вы помните, может быть, что тот же результат был получен в первых главах интегрированием по всей плоскости. Закон Гаусса дает ответ намного быстрее (хотя он не так широко применим, как прежний метод).
Подчеркнем, что этот результат относится только к полю,
созданному зарядами, размещенными на плоскости. Если по соседству есть другие заряды, общее поле близ плоскости было бы суммой (5.3) и поля прочих зарядов. Закон Гаусса тогда только гарантировал бы, что
(5.4)
где E1 и Е2 — поля, направленные на каждой стороне плоскости наружу от нее.
Задача о двух параллельных плоскостях с равными и противоположными плотностями зарядов +s и -s решается тоже просто, если только снова предположить, что внешний мир абсолютно симметричен. Составите ли вы суперпозицию двух решений для отдельных плоскостей или построите гауссов ящик, охватывающий обе плоскости, в обоих случаях легко видеть, что поле снаружи плоскостей равно нулю (фиг. 5.7, а). Но, заключив в ящик только одну или только другую поверхность, как показано на фиг. 5.7, б или в, мы легко обнаружим, что поле между плоскостями должно быть вдвое больше поля отдельной плоскости.
Фиг. 5.7. Поле между двумя заряженными листами равно s/e0.
Итог таков:
(5.5)
Е (снаружи) =0. (5.6)
§ 7. Однородно заряженный шар; заряженная сфера
В гл. 4 мы уже применяли закон Гаусса, когда должны были найти поле вне однородно заряженной шаровой области. Тот же метод может дать нам и поле в точках внутри шара. Этот расчет, например, может быть использован для получения хорошего приближения к полю внутри атомного ядра. Вопреки тому, что протоны в ядре взаимно отталкиваются, они из-за сильного ядерного притяжения распределены по всему ядру почти однородно.
Пусть у нас имеется сфера радиуса R, однородно наполненная зарядами. Пусть заряд в единице объема равен р. Снова, используя соображения симметрии, можно предположить, что поле радиально и в точках, равноудаленных от центра, по величине одинаково.
Фиг. 5.8. Закон Гаусса можно применить для определения поля внутри однородно заряженного шара.
Чтоб определить поле в точке на расстоянии r от центра, представим сферическую гауссову поверхность радиуса r (r<R), как показано на фиг. 5.8. Поток из нее равен
Заряд внутри нее равен внутреннему объему, умноженному на r, т. е.
Применяя закон Гаусса, получаем величину поля
(5.7)
Вы видите, что при r=R эта формула дает правильный результат. Электрическое поле пропорционально расстоянию от центра и направлено по радиусу наружу.
Аргументы, которые мы только что приводили для однородно заряженного шара, можно применить и к заряженной сфере. Опять предполагая радиальность и сферическую симметрию поля, из закона Гаусса немедленно получаем, что поле вне сферы во всем подобно полю точечного заряда, поле же внутри сферы — нуль (если мы проведем гауссову поверхность внутри сферы, то внутри нее зарядов не окажется).
§ 8. Точен ли закон Кулона?
Если мы вглядимся чуть пристальнее в то, как поле внутри сферы оказывается нулевым, то лучше поймем, почему закон Гаусса обязан своим происхождением закону Кулона, т. е. точной зависимости силы от второй степени расстояния. Возьмем произвольную точку Р внутри однородно заряженной сферической поверхности.
Фиг. 5.9. Во всякой точке Р внутри заряженной сферической оболочки поле равно нулю.
Представим узкий конус, который начинается в точке Р и тянется до поверхности сферы, вырезая там небольшой сферический участок Dat (фиг. 5.9). В точности симметричный конус по другую сторону вершины вырежет на поверхности площадь Dа2. Если расстояния от Р до этих двух элементов площади равны r1 и r2, то площади находятся в отношении
(Вы можете доказать это для любой точки шара с помощью геометрии.)
Если поверхность сферы заряжена равномерно, то заряд Dq на каждом элементе поверхности пропорционален его площади
Тогда закон Кулона утверждает, что величины полей, создаваемых в Р этими двумя элементами поверхности, находятся в отношении
Поля в точности взаимно уничтожаются. Таким способом можно разбить на пары всю сферу. Значит, все поле в точке Р равно нулю. Но вы видите, что этого не было бы, окажись показатель степени r в законе Кулона не равным в точности двойке.
Справедливость закона Гаусса зависит от закона обратных квадратов Кулона. Если бы закон силы не подчинялся в точности зависимости 1/r2, то поле внутри однородно заряженной сферы не было бы в точности равно нулю. Например, если бы поле менялось быстрее (скажем, как 1/r3), то часть сферы, которая ближе к точке Р, создала бы в точке Р более сильное поле, чем дальняя часть. Получилось бы (для положительного поверхностного заряда) радиальное поле, направленное к центру. Эти заключения подсказывают нам элегантный путь проверки точности выполнения закона обратных квадратов. Для этого нужно только узнать, в точности ли поле внутри однородно заряженной сферы равно нулю.
Наше счастье, что такой способ существует. Ведь обычно трудно измерить физическую величину с высокой точностью. Добиться однопроцентной точности было бы нетрудно, но как быть, если нам понадобится измерить закон Кулона с точностью, скажем, до одной миллиардной? Можно почти ручаться, что измерить с такой точностью силу, действующую между двумя заряженными телами, не способны даже лучшие приборы. Но если только нужно убедиться в том, что поле внутри сферы меньше некоторого значения, то можно провести довольно точное измерение справедливости закона Гаусса и тем самым проверить обратную квадратичную зависимость в законе Кулона. В сущности происходит сравнение закона силы с идеальным законом обратных квадратов. Именно такие сравнения одинаковых, или почти одинаковых, вещей обычно становятся основой самых точных физических измерений.
Как же наблюдать поле внутри заряженной сферы? Один из способов,— это попытаться зарядить тело, дотронувшись им до внутренней части сферического проводника. Вы знаете, что если коснуться металлическим шариком заряженного тела, затем электрометра, то прибор зарядится и стрелка отклонится от нуля (фиг. 5.10, а). Шар собирает на себя заряды, потому что снаружи заряженной сферы имеются электрические поля, заставляющие заряды переходить на шарик (или с него). А если вы проделаете тот же опыт, коснувшись шариком внутренности заряженной сферы, то увидите, что к электрометру заряд не подводится. Из такого опыта сразу видно, что внутреннее поле составляет в лучшем случае несколько процентов от внешнего и что закон Гаусса верен, по крайней мере, приближенно.
Кажется, первым, заметившим, что поле внутри заряженной сферы равно нулю, был Бенджамен Франклин. Это показалось ему странным. Когда он сообщил об этом Пристли, тот заподозрил, что это связано с законом обратных квадратов, потому что было известно, что сферический слой вещества не создает внутри себя поля тяготения. Но Кулон измерил обратную квадратичную зависимость только через 18 лет, а закон Гаусса появился на свет и того позже.
Фиг. 5.10. Внутри замкнутой проводящей оболочки электрическое поле равно нулю.
Закон Гаусса был проверен очень тщательно; для этого электрометр помещали внутрь большой сферы и наблюдали, отклонится ли стрелка, когда сферу зарядят до высокого напряжения. Результат всегда получался отрицательным. Если знать геометрию аппарата и чувствительность прибора, можно рассчитать наименьшее поле, которое еще доступно наблюдению. Из этого числа можно установить верхний предел отклонения показателя степени от двух. Если записать зависимость электростатической силы от расстояния в виде r-2+e, то можно определить верхнюю границу e. Этим способом Максвелл узнал, что e меньше 1/10000. Опыт был повторен и усовершенствован в 1936 г. Плимптоном и Лафтоном. Они обнаружили, что кулонов показатель отличается от 2 меньше чем на одну миллиардную.
Это подводит нас к интересному вопросу: как точно выполняется закон Кулона в различных обстоятельствах? В только что описанных опытах измерялась зависимость поля от расстояния на расстояниях порядка десятков сантиметров. А что можно сказать о внутриатомных расстояниях, скажем внутри атома водорода, где, как мы считаем, электрон притягивается к ядру по тому же закону обратных квадратов? Конечно, для описания механической части поведения электрона нужна квантовая механика, но сила здесь — по-прежнему привычная электростатическая сила. В постановке задачи об атоме водорода известна потенциальная энергия электрона как функция расстояния от ядра, и тогда закон Кулона приводит к потенциалу, обратно пропорциональному первой степени расстояния. С какой точностью этот показатель известен на таких малых расстояниях? В итоге очень тщательных измерений относительного расположения уровней энергии водорода, проведенных в 1947 г. Лэмбом и Ризерфордом, нам теперь известно, что и на расстояниях порядка атомных, т. е. порядка ангстрема (10-8см), показатель выдерживается с точностью до одной миллиардной.
Такая точность измерений Лэмба и Ризерфорда оказалась возможной опять благодаря одной физической «случайности». Среди состояний атома водорода есть два таких, у которых энергии должны быть почти одинаковыми лишь в том случае, если потенциал меняется точно по закону 1/r. Измерялась очень малая разница в энергиях по частоте w фотонов, испускаемых или поглощаемых при переходах из одного состояния в другое (согласно формуле DE=hw). Расчеты показали, что DЁ заметно отличалась бы от наблюдавшегося значения, если бы показатель степени в законе силы 1/г2 отличался бы от 2 только на одну миллиардную.
А верен ли этот закон и на еще меньших расстояниях? В ядерной физике измерения показали, что на типично ядерных расстояниях (порядка 10-13 см) существуют электростатические силы и что меняются они все еще как обратные квадраты расстояний. Одно из свидетельств в пользу этого мы разберем в следующих главах. Мы уверены, таким образом, что закон Кулона еще выполняется и на расстояниях около 10-13 см.
А что можно сказать о расстоянии 10-14 см! Этот интервал исследовали, бомбардируя протоны очень энергичными электронами и следя за тем, как они рассеиваются. Сегодняшние данные указывают на то, что на этих расстояниях закон терпит крах. Электрические силы на расстояниях меньше 10-14 см оказываются чуть ли не в 10 раз слабее. Этому есть два объяснения. То ли закон Кулона на таких маленьких расстояниях не действует, то ли эти тела (электроны и протоны) не являются точечными зарядами. Возможно, что один из них как-то размазан (а может, и оба). Большинство физиков предпочитают думать, что размазан заряд протона. Мы знаем, что протоны сильно взаимодействуют с мезонами. Это означает, что протон время от времени существует в виде нейтрона с p+ - мезоном вокруг. Такое расположение в среднем выглядело бы как небольшой шарик положительного заряда. А мы знаем, что нельзя считать поле шара зарядов меняющимся вплоть до самого центра по закону 1/r2. Вполне вероятно, что заряд протона размазан, но теория пионов еще очень несовершенна, и не исключено, что и закон Кулона на малых расстояниях отказывает. Вопрос пока остается открытым.
Еще один каверзный вопрос: если закон обратных квадратов верен и на расстояниях порядка 1м и на расстояниях порядка 10-10 м, то остается ли тем же коэффициент 1/4pe0? Да,— гласит ответ,— по крайней мере, с точностью до 15 миллионных.
Вернемся теперь к важному вопросу, от которого мы отмахнулись, когда говорили об опытном подтверждении закона Гаусса.
Вас могло удивить, как в опыте Максвелла и Плимптона— Лафтона удалось достичь такой точности. Ведь вряд ли сферический проводник мог быть идеальной сферой. Достичь точности в одну миллиардную — это прекрасно; но резонно спросить: как могли они столь точно изготовить сферу? Наверняка на сфере были небольшие неправильности, как на всякой реальной сфере, и не могли ли эти нерегулярности создать какое-то поле внутри? Мы хотим показать теперь, что в идеальной сфере вовсе нет необходимости. Оказывается можно доказать, что внутри замкнутой проводящей оболочки любой формы поля не бывает. Иными словами, опыты зависели от 1/r2, но никак не были связаны со сферической формой поверхности (разве что со сферой легче было бы рассчитать поле, если бы закон Кулона оказался ошибочным). Итак, мы снова возвращаемся к этому вопросу. Для решения его нам нужно знать кое-какие свойства проводников электричества.
§ 9. Поля проводника
Проводник электричества — это твердое тело, в котором есть много «свободных» электронов. Электроны могут двигаться в веществе свободно, но не могут покидать поверхности. В металле бывает так много свободных электронов, что всякое электрическое поле приводит многие из них в движение. И либо возникший таким образом ток электронов должен непрерывно поддерживать свое существование за счет внешних источников энергии, либо движение электронов прекращается, как только они разрядят источники, вызвавшие ноле вначале. В условиях «электростатики» мы не рассматриваем непрерывных источников тока (о них мы будем говорить в магнитостатике), так что электроны движутся только до тех пор, пока не расположатся так, что повсюду внутри проводника создастся нулевое электрическое поле. (Как правило, это происходит в малые доли секунды.) Если бы осталось внутри хоть какое-нибудь поле, оно бы вынудило двигаться еще какие-то электроны; возможно только такое электростатическое решение, когда поле всюду внутри равно нулю.
Теперь рассмотрим внутренность заряженного проводящего тела. (Мы имеем в виду внутреннюю часть самого металла.) Так как металл — проводник, то внутреннее поле должно быть нулем, а значит, и градиент потенциала j равен нулю. Это значит, что j от точки к точке не меняется. Любой проводник — это эквипотенциальная область, и его поверхность — эквипотенциальна. Раз в проводящем материале электрическое поле повсюду равно нулю, то и дивергенция Е тоже равна нулю, и по закону Гаусса плотность заряда во внутренней части проводника обращается в нуль.
Но если внутри проводника не может быть зарядов, как же он вообще может быть заряжен? Что мы имеем в виду, когда говорим, что проводник «заряжен»? Где эти заряды? Они находятся на поверхности проводника, где существуют большие силы, не дающие им покинуть ее, так что они не вполне «свободны». Когда мы будем изучать физику твердого тела, мы увидим, что избыточный заряд в любом проводнике находится только в узком слое у поверхности, толщиной в среднем в один-два атома. Для наших нынешних целей достаточно правильно будет говорить, что любой заряд, попавший на (или в) проводник, собирается на его поверхности; внутри проводника никаких зарядов нет.
Мы замечаем также, что электрическое поле возле самой поверхности проводника должно быть нормально к поверхности. Касательной составляющей у него быть не может. Если бы она появилась, электроны двигались бы вдоль поверхности; нет сил, которые способны помешать этому. Это можно выразить и иначе: мы знаем, что линии электрического поля должны всегда быть направлены поперек эквипотенциальной поверхности.
Применяя закон Гаусса, мы можем связать напряженность поля у самой поверхности проводника с локальной плотностью заряда на поверхности. За гауссову поверхность мы примем небольшой цилиндрический стакан, наполовину погруженный в проводник, а наполовину выдвинутый из него (фиг. 5.11). Вклад в общий поток Е дает только та часть стакана, которая находится вне проводника. Тогда поле у наружной поверхности проводника равно
Вне проводника:
(5.8)
Фиг. 5.11. Электрическое поле у самой внешней поверхности проводника пропорционально локальной поверхностной плотности заряда.
1 — гауссова поверхность; 2 — локальная плотность поверхностного заряда.s.
Почему слой зарядов на проводнике создает не такое поле, как слой зарядов сам по себе! Иначе говоря, почему (5.8) вдвое больше (5.3)? Но ведь мы не утверждали, будто в проводнике нет больше никаких «других» зарядов. В действительности для того, чтобы в проводнике Е было равно 0, в нем обязательно должны присутствовать какие-то заряды. В непосредственной близости от точки Р на поверхности заряды действительно создают поле Eлок=sлок/2e0 как внутри, так и снаружи поверхности. Но все прочие заряды проводника сообща «устраивают заговор», чтобы создать в точке Р добавочное поле, равное по величине Елок. Суммарное внутреннее поле обращается в нуль, а наружное удваивается: 2Eлок=s/e0.
§ 10. Поле внутри полости проводника
Вернемся теперь к проблеме пустотелого резервуара — проводника, имеющего внутри полость. В металле поля нет, а вот есть ли оно в полости? Покажем, что если полость пуста, то поля в ней быть не может, какова бы ни была форма проводника или полости (фиг. 5.12). Рассмотрим гауссову поверхность, подобную S на фиг. 5.12, которая окружает собой полость, но остается всюду в веществе проводника. Всюду на поверхности S поле равно нулю, так что потока сквозь S быть не может, и суммарный заряд внутри S должен быть равен нулю. Затем можно вывести из симметрии, что на внутренней поверхности сферической оболочки нет никакого заряда. Но в более общем случае мы только можем сказать, что на внутренней поверхности проводника имеется равное количество положительного и отрицательного зарядов. Может быть, окажется, что на одной части имеется положительный заряд, а где-то в другом месте — отрицательный (см. фиг. 5.12)? Такие вещи законом Гаусса не исключаются.
Фиг. 5.12. Чему равно поле в пустой полости проводника произвольной формы?
На самом деле, конечно, получается, что равные, но противоположные заряды на внутренней поверхности должны были бы соскользнуть навстречу друг другу и уничтожить друг друга. Мы можем убедиться в том, что они уничтожат друг друга, применив закон о равенстве нулю циркуляции Е (электростатику). Пусть на каких-то частях внутренней поверхности оказались заряды. Мы знаем, что еще где-то должно присутствовать равное количество противоположных зарядов. Но любые линии поля Е начинаются на положительных зарядах и кончаются на отрицательных (мы рассматриваем случай, когда свободных зарядов в полости нет). Представим себе теперь контур Г, пересекающий полость вдоль линии силы от какого-то положительного заряда к какому-то отрицательному и возвращающийся к исходной точке по телу проводника (см. фиг. 5.12). Интеграл вдоль такой линии сил в пределах от положительного до отрицательного заряда не был бы равен нулю, а интеграл по пути через металл
равен нулю, так как там Е = 0. Так что мы бы имели
Но криволинейный интеграл от Е по любому замкнутому контуру в электростатическом поле всегда равен нулю. Значит, внутри пустой полости не может быть никаких полей, равно как не может быть никаких зарядов на внутренней поверхности.
Заметьте, что мы все время подчеркивали, что полость пуста. Если поместить какие-то заряды в фиксированных местах полости (скажем, на изоляторе или на небольшом проводнике, изолированном от основного), то внутри полости могут быть поля. Но тогда она уже не будет «пустой».
Мы показали, что если полость целиком окружена проводником, то никакое статическое распределение зарядов снаружи никогда не создаст поля внутри. Это объясняет принцип «защиты» электрического оборудования, которое помещается в металлическую коробку. К тем же рассуждениям можно прибегнуть, если нужно показать, что никакое статическое распределение зарядов внутри замкнутого сплошного проводника не может создать поля вне его. Защита действует в обе стороны! В электростатике (но не в изменяющихся полях) поля по обе стороны сплошной проводящей оболочки полностью не зависят одно от другого.
Теперь вы понимаете, почему удалось проверить закон Кулона с такой точностью. Форма полой оболочки не имела значения. Она вовсе не должна была быть круглой, она могла быть и кубом! Если закон Гаусса точен, то поле внутри всегда равно нулю. Вы понимаете теперь, почему вполне безопасно сидеть внутри высоковольтного генератора Ван-де-Граафа в миллион вольт, не боясь, что вас ударит ток, — Вас охраняет сам Гаусс!
Глава 6
ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В РАЗНЫХ ФИЗИЧЕСКИХ УСЛОВИЯХ
§1.Уравнения электростатического потенциала
§2.Электрический диполь
§3.3амечания о векторных уравнениях
§4.Дипольный потенциал как градиент
§5.Дипольное приближение для произвольного распределения
§6.Поля заряженных проводников
§7. Метод изображений
§8.Точечный заряд у проводящей плоскости
§9.Точечный заряд у проводящей сферы
§10.Конденеаторы; параллельные пластины
§11.Пробой при высоком напряжении
§12.Ионный микроскоп
Повторить: гл. 23 (вып. 2) «Резонанс»
§ 1. Уравнения электростатического потенциала
В этой главе мы расскажем о поведении электрического поля в тех или иных обстоятельствах. Вы познакомитесь с тем, как ведет себя электрическое поле, и с некоторыми математическими методами, используемыми для определения поля.
Отметим для начала, что математически вся задача состоит в решении двух уравнений — максвелловских уравнений электростатики:
(6.1)
(6.2)
Фактически оба эти уравнения можно объединить в одно. Из второго уравнения сразу же следует, что поле может считаться градиентом некоего скаляра (см. гл. 3, § 7):
(6.3)
Электрическое поле каждого частного вида можно, если нужно, полностью описать с помощью потенциала поля j. Дифференциальное уравнение, которому должно удовлетворять j, получится, если (6.3) подставить в (6.1):
(6.4)
Расходимость градиента j—это то же, что С2, действующее на j:
(6.5)
так что уравнение (6.4) мы запишем в виде
(6.6)
Оператор С2 называется лапласианом, а уравнение (6.6) — уравнением Пуассона. Весь предмет электростатики с математической точки зрения заключается просто в изучении решений одного-единственного уравнения (6.6). Как только из (6.6) вы найдете j, поле Е немедленно получается из (6.3).
Обратимся сперва к особому классу задач, в которых r задано как функция х, у, z. Такая задача почти тривиальна, потому что решать уравнение (6.6) в общем случае мы уже умеем. Мы ведь показали, что если r в каждой точке известно, то потенциал в точке (1) равен
(6.7)
где r(2) — плотность заряда, dV2 — элемент объема в точке (2), а r12 — расстояние между точками (1) и (2). Решение дифференциального уравнения (6.6) свелось к интегрированию по пространству. Решение (6.7) нужно отметить особо, потому что в физике часто встречаются ситуации, приводящие к уравнениям, которые выглядят так:
и (6.7) является прототипом решения любой такой задачи.
Проблема расчета электростатического поля, таким образом, решается совершенно честно, если только положения всех зарядов известны. Давайте посмотрим на нескольких примерах, как действует эта формула.
§ 2. Электрический диполь
Сначала возьмем два точечных заряда +q и -q, разделенных промежутком d. Проведем ось z через заряды, а начало координат поместим посредине между ними (фиг. 6.1). Тогда по формуле (4.24) потенциал системы двух зарядов дается выражением
Мы не собираемся выписывать формулу для электрического поля, но всегда при желании можем это сделать, раз мы знаем потенциал. Так что задача двух зарядов решена.
Существует важный частный случай этой задачи, когда заряды расположены близко друг к другу, иными словами, когда нас интересует поле на таких расстояниях от зарядов, что по сравнению с ними промежуток между зарядами кажется незначительным. Такую тесную пару зарядов называют диполем. Диполи встречаются очень часто.
Фиг. 6.1. Диполь: два заряда +q и -q, удаленные друг от друга на расстояние d.
«Дипольную» антенну можно часто приближенно рассматривать как два заряда, разделенные небольшим расстоянием (если нас не интересует поле у самой антенны). (Обычно интерес представляют антенны с движущимися зарядами; уравнения статики тогда неприменимы, но для некоторых целей они все же представляют весьма сносное приближение.)
Важнее, пожалуй, диполи атомные. Если в каком-то веществе есть электрическое поле, то электроны и протоны испытывают влияние противоположных сил и смещаются друг относительно друга. Вы помните, что в проводнике некоторые электроны сдвигаются к поверхности, так что внутреннее поле обращается в нуль. В изоляторе электроны не могут сильно разойтись; им мешает притяжение ядра. И все же они как-то смещаются. Так что хотя атом (или молекула) и остается нейтральным, во внешнем электрическом поле все же возникает еле заметное разделение положительных и отрицательных зарядов, и атом становится микроскопическим диполем. Если нам нужно знать поле этих атомных диполей поблизости от предмета обычных размеров, то мы имеем дело с расстояниями, большими по сравнению с промежутками между зарядами.
В некоторых молекулах из-за самой их формы заряды несколько разделены даже в отсутствие внешних полей. В молекуле воды, например, имеется отрицательный заряд на атоме кислорода и положительный заряд на обоих атомах водорода, которые расположены несимметрично (фиг. 6.2). Хоть заряд всей молекулы равен нулю, все же имеется распределение заряда с небольшим преобладанием отрицательного заряда на одной стороне и положительного на другой. Это расположение, конечно, не такое простое, как у двух точечных зарядов, но если смотреть на него издалека, оно действует как диполь. Как мы увидим чуть позже, поле на больших расстояниях нечувствительно к мелким деталям расположения.
Фиг. 6.2. Молекула воды Н2O.
Взглянем теперь на поле двух зарядов противоположных знаков, расстояние d между которыми мало. Если d станет нулем, два заряда сойдутся в одном месте, два потенциала сократятся, поле исчезнет. Но если они не совсем слились, то можно получить хорошее приближение к потенциалу, разложив слагаемые в (6.8) в ряд по степеням малой величины d (по формуле бинома Ньютона). Оставляя только первые степени d, мы напишем
Удобно обозначить
Тогда
и
Разлагая в биномиальный ряд [1 — (zd/r2)]-1/2 и отбрасывая члены с высшими степенями d, мы получаем
Подобно этому,
Вычитая эти два члена, имеем для потенциала
(6.9)
Потенциал, а значит, и поле, являющееся его производной, пропорциональны qd — произведению заряда на расстояния между зарядами.
Фиг. 6.3. Векторные обозначения, для диполя.
Это произведение называется диполъным моментом пары зарядов, и мы обозначим его символом р (не путайте с импульсом!):
(6.10)