Глава 33
ПОЛЯРИЗАЦИЯ
§ 1. Вектор электрического поля световой волны
§ 2. Поляризация рассеянного света
§ 3. Двойное лучепреломление
§ 4. Поляризаторы
§ 5. Оптическая активность
§ 6, Интенсивность отраженного света
§ 7. Аномальное преломление
§ 1. Вектор электрического поля световой волны
В этой главе мы рассмотрим круг явлений, связанных с векторным характером электрического поля световой волны. В предыдущих главах направление колебаний электрического поля нас не интересовало, правда, мы отметили, что вектор электрического поля лежит в плоскости, перпендикулярной направлению распространения света. Но нам не нужно было знать направление вектора более точно. Теперь мы перейдем к изучению явлений, в которых главную роль играет определенное направление колебаний электрического вектора.
В идеально монохроматической световой волне электрическое поле колеблется с определенной частотой, а так как x- и y-компоненты поля могут колебаться независимо с одной и той же частотой, то сначала мы рассмотрим сложение двух взаимно перпендикулярных колебаний. Какое электрическое поле возникает при сложении колебаний x- и y-компонент поля с одинаковой частотой? Складывая колебание в направлении x и колебание с той же фазой в направлении у, получаем в плоскости xy колебание в новом направлении.
На фиг. 33.1 показано, как происходит сложение колебаний с разными амплитудами в направлении x и y. Но примеры, представленные на этом рисунке, не исчерпывают всех возможностей: до сих пор предполагалось, что колебания вдоль осей x и y находятся в одной фазе, но это совсем не обязательно. Может случиться, что х- и y-колебания происходят с разными фазами.
В этом последнем случае вектор электрического поля описывает эллипс, что можно проиллюстрировать на следующем простом примере.
Фиг. 33.1. Сложение колебаний в направлениях х и у, когда разность фаз между ними равна нулю.
Подвесим на длинной веревке мяч, чтобы он мог свободно колебаться в горизонтальной плоскости; колебания будут носить синусоидальный характер. Представим себе мысленно оси х и у в горизонтальной плоскости колебаний мяча с началом координат в точке покоя мяча. Выбирая соответствующее начальное смещение и начальную скорость мяча, можно заставить мяч колебаться по оси х, по оси у или по любому другому направлению в плоскости ху с одной и той же частотой, равной частоте маятника. Эти колебания мяча аналогичны колебаниям электрического вектора, приведенным на фиг. 33.1. В каждом случае колебания в направлениях х ж у достигают максимума одновременно и, следовательно, оба колебания находятся в фазе. Но известно, что самый общий тип движения мяча — движение по эллипсу — возникает, когда колебания в направлениях х и у происходят с разными фазами.
На фиг. 33.2 показано сложение колебаний по осям х и у для разных значений сдвига фаз между ними. Во всех примерах электрический вектор описывает эллипс. Колебание по прямой есть тоже частный случай эллиптического, когда сдвиг фаз равен нулю (или целому кратному я); при равных амплитудах и сдвиге фаз 90° (или нечетном числе л/2) происходит движение по окружности.
На фиг. 33.2 компоненты электрического поля в направлениях х и у записаны в виде комплексных чисел, что оказывается очень удобным для явного выделения разности фаз. В этих обозначениях не следует только путать действительную и мнимую части с х- и y-компонентами поля. Изображенные на фиг. 33.2 компоненты поля по осям х и у есть реальные физические поля, которые можно измерить. Действительная и мнимая части вектора электрического поля введены только для математического удобства, и физического смысла такое разделение не имеет.
Сделаем несколько замечаний о терминологии. Свет называется линейно поляризованным (иногда плоско поляризованным), если электрическое поле колеблется по прямой линии; на фиг. 33.1 показан случай линейной поляризации. Когда вектор электрического поля описывает эллипс, говорят об эллиптической поляризации. Если же электрический вектор описывает окружность, мы имеем круговую поляризацию. Если электрический вектор при своем движении в световой волне крутится как правосторонний винт, говорят о правой круговой поляризации. На фиг. 33.2, ж приведен пример правой круговой поляризации, а на фиг. 33.2, в — пример левой круговой поляризации. В обоих случаях свет движется от плоскости страницы к читателю. Наше определение левой и правой круговых поляризаций согласуется с подобными определениями для всех других частиц в современной физике, для которых можно ввести понятие поляризации (например, для электронов). Однако в курсах оптики иногда используются прямо противоположные определения, поэтому читателю следует с осторожностью относиться к терминам левая и правая поляризация.
Мы описали линейную, круговую и эллиптическую поляризации света и охватили, таким образом, все возможные случаи состояния света, кроме одного,—случая неполяризованного света. Ну, а как же может получиться неполяризованный свет, если известно, что колебания непременно происходят по тому или иному эллипсу?
Возьмем не вполне монохроматический свет, когда сдвиг фаз х- и y-колебаний непостоянен и электрический вектор колеблется произвольным образом; тогда поляризация света будет все время меняться. Вспомним, что один атом излучает свет за 10-8 сек, и, если все атомы будут излучать свет с разной поляризацией, поляризация полного пучка света будет меняться через каждые 10-8 сек.
Фиг. 33.2. Сложение колебаний в направлениях х и у
с разными фагами.
Компоненты Ех и Еу записаны и в действительных и в комплексных
обозначениях.
Когда поляризация света изменяется столь быстро, что ее невозможно измерить, говорят о неполяризованном свете, потому что все эффекты поляризации усредняются и сводятся к нулю. Ни один из интерференционных эффектов при сложении поляризаций не проявляется для неполяризованного света. В то же время само определение неполяризованного света подразумевает, что экспериментально невозможно установить, поляризован свет или нет.
§ 2. Поляризация рассеянного света
Первый пример поляризационных явлений, который мы уже ранее обсуждали, есть рассеяние света. Рассмотрим проходящий в воздухе пучок света, например солнечного света. Электрическое поле возбуждает колебания зарядов в воздухе,. и в результате этих колебаний излучается свет, интенсивность которого максимальна в плоскости, перпендикулярной движению зарядов. Пучок солнечного света неполяризован, т. е. направление поляризации постоянно меняется, а следовательно, изменяется и направление колебаний зарядов в воздухе. Возьмем пучок света, рассеянный под углом 90°; он возникает от излучения только тех частиц воздуха, которые колеблются перпендикулярно линии зрения наблюдателя, и, следовательно, пучок рассеянного света будет поляризован в направлении этих колебаний. Таким образом, рассеяние дает нам пример получения поляризованного света.
§ 3. Двойное лучепреломление
Есть еще один интересный факт из области поляризационных явлений. Встречаются среды, показатель преломления которых различен для света, линейно поляризованного в том или другом направлении. Допустим, например, что имеется некий материал, состоящий из вытянутых несферических молекул, длина которых больше их ширины; предположим, что молекулы в веществе выстроены так, чтобы их большие оси оказались параллельными. Что произойдет, когда на тело подействует осциллирующее электрическое поле? Предположим, что такая структура молекул способствует тому, что электроны в материале легче поддаются колебаниям вдоль оси молекулы, чем поперек нее. При таких условиях следует ожидать, что поляризация в одном направлении будет вызывать один эффект, а поляризация, направленная под прямым углом к первой, — совсем другой. Назовем направление осей молекул оптической осью. Показатель преломления принимает разные значения в зависимости от того, направлена ли поляризация вдоль оптической оси или перпендикулярно ей. Среда с такими свойствами называется двоякопреломяяющей. Она обладает двумя разными способами преломления, т. е. двумя показателями преломления в зависимости от поляризации света в среде. Какие материалы обладают этим свойством? Из разных соображений вытекает, что двояко-преломляющая среда должна иметь некоторое количество ориентированных несферических молекул. Ясно, что кубический кристалл, имеющий симметрию куба, не может быть двояко-преломляющим. А вот длинные игловидные кристаллы, безусловно, содержат несимметричные молекулы, и в них легко . наблюдать эффект двойного лучепреломления.
Попробуем сообразить, что получится, если направить поляризованный луч на пластинку двоякопреломляющего материала. Если поляризация параллельна оптической оси, свет пройдет через пластинку с одной скоростью, а если поляризация перпендикулярна — с другой скоростью. Интересная ситуация возникает, если луч света поляризован, например, под углом в 45° к направлению оптической оси. Тогда поляризация, как известно, представляется в виде суммы поляризаций в направлении х и у с равными амплитудами и фазами, что показано на фиг. 33.2, а. Поскольку лучи с поляризациями вдоль осей х и у движутся в среде с разной скоростью, фазы обеих компонент поля будут расти по-разному.
Таким образом, несмотря на совпадение фаз х- и у-компонент вначале, внутри среды между ними появится разность фаз, пропорциональная глубине проникновения света в среду. Изменение поляризации света в процессе прохождения через среду показано в серии рисунков на фиг. 33.2. Если пластинка имеет такую толщину, что разность фаз на выходе между поляризациями по осям х и у равна 90° (фиг. 33.2, в), то свет выйдет из пластинки поляризованным по кругу. Пластинки такой толщины называются пластинками в четверть волны, поскольку они приводят к разности фаз в одну четвертую цикла. Пропуская линейно поляризованный свет через две пластинки в четверть волны, снова получаем линейно поляризованный свет, но направление поляризации повернется на прямой угол (это легко понять из фиг. 33.2, в).
Явление двойного лучепреломления легко продемонстрировать с помощью листка целлофана. Целлофан состоит из длинных молекул — волокон, и его структура неизотропна, поскольку волокна по большей части вытянуты в одном направлении. Для наблюдения явления двойного лучепреломления необходим пучок линейно поляризованного света, который нетрудно получить, пропуская неполяризованный свет через пластинку поляроида. О поляроиде мы еще будем говорить более подробно, а пока отметим одно его важное свойство: свет, поляризованный вдоль оси поляроида, проходит через него почти свободно, а свет, поляризованный перпендикулярно оси, сильно поглощается поляроидом. Когда неполяризованный свет пропускается через пластинку поляроида, то проходит только та часть света, колебания которой параллельны оси поляроида, поэтому прошедший через пластинку луч окажется линейно поляризованным.
Фиг. 33.3. Схема эксперимента по двойному лучепреломлению в целлофане.
Векторы электрического поля световой волны изображены пунктирными стрелками. Направления поляризации, пропускаемые поляроидами, и оптические оси целлофана изображены сплошными стрелками. Падающий луч света неполяризован.
Это свойство поляроида используют также для определения направления поляризации линейно поляризованного света; кроме того, с помощью поляроида можно определить, есть ли у света вообще линейная поляризация или нет. Для этого достаточно пропустить свет через пластинку поляроида и поворачивать ее в плоскости, перпендикулярной лучу. Линейно поляризованный свет не может пройти через поляроид, когда ось поляроида перпендикулярна направлению поляризации луча. Повернув пластинку на 90°, мы увидим прошедший через нее луч лишь чуть-чуть менее ярким, чем падающий пучок света. Если яркость луча, пропущенного поляроидом, не зависит от ориентации поляроида, падающий пучок света не имеет линейной поляризации.
Для демонстрации двойного лучепреломления в целлофане возьмем два поляроида и расположим их, как показано на фиг. 33.3. Из первого поляроида выходит линейно поляризованный пучок света; мы пропускаем его через целлофан, а затем через другой поляроид, чтобы учесть действие целлофана на линейно поляризованный свет. Сначала расположим оси поляроидов перпендикулярно друг другу и уберем листок целлофана. Через второй поляроид свет не проходит совсем. Теперь поставим листок целлофана между поляроидами и будем поворачивать его вокруг оси пучка света. При этом, вообще говоря, некоторая часть света будет все время проходить через второй поляроид. Имеются, однако, две ориентации листка целлофана, перпендикулярные друг другу, при которых свет через второй поляроид не проходит. Ясно, что эти ориентации целлофана не влияют на линейную поляризацию проходящего через него света и должны поэтому совпадать с направлением оптической оси целлофана и перпендикулярным к нему направлением.
Здесь мы предполагаем, что скорость света, проходящего через целлофан, различна для указанных двух направлений поляризации, но само направление поляризации при прохождении света не меняется. Если выбрать промежуточную ориентацию целлофана где-то между двумя главными направлениями, как на фиг. 33.3, то через второй поляроид пройдет яркий аучок света.
Оказывается, толщина обычного целлофана, используемого в магазинах для упаковки, равна почти точно половине длины волны для большинства цветов в спектральном разложении белого света. Целлофан такой толщины поворачивает направление поляризации линейно поляризованного света на 90°, если это направление в падающем пучке образует угол 45° с оптической осью целлофана. Таким образом, выходящий из целлофана луч обладает как раз такой поляризацией, что может пройти второй поляроид.
Если в нашем опыте использовать пучок белого света, то только для одной компоненты его спектрального разложения толщина целлофана совпадет с половиной длины волны, и пучок, пропущенный вторым поляроидом, будет иметь цвет именно этой компоненты. Цвет пучка, прошедшего через наше устройство, будет зависеть от толщины листа целлофана, а эффективную толщину целлофана мы можем менять, наклоняя листок под некоторым углом и таким образом заставляя свет проходить больший путь внутри целлофана. При наклоне листка целлофана цвет пропущенного пучка меняется. Используя целлофан разной толщины, можно сконструировать фильтры, пропускающие лучи вполне определенного цвета. Эти фильтры обладают тем замечательным свойством, что они пропускают один цвет, когда оси двух поляроидов перпендикулярны, и дополнительный к нему цвет, когда оси поляроидов параллельны.
Системы ориентированных молекул имеют еще одно, на этот раз вполне практическое применение. Некоторые пластики состоят из очень длинных и сложных молекул, скрученных между собой. При очень тщательном проведении процесса затвердевания пластика молекулы, скручиваясь, образуют сплошную массу и ориентируются равномерно в самых разных направлениях, так что пластик обычно не проявляет свойства двойного лучепреломления. Но при затвердевании часто образуются дефекты и напряжения, которые приводят к некоторой неоднородности материала. Напряжения, возникающие в пластике, как бы вытягивают целую связку молекул, и молекулярные нити ориентируются преимущественно вдоль направления натяжения. Благодаря внутренним напряжениям пластик становится двоякопреломляющим, и эффект двойного лучепреломления можно наблюдать, пропуская через него поляризованный свет. Анализируя пропущенный пластиком пучок с помощью поляроида, мы заметим темные и светлые полосы (окрашенные в разные цвета, если берется пучок белого света). Если образец подвергнуть растяжению, вся совокупность полос начинает сдвигаться, а подсчитав полосы и определив место их наибольшего скопления, можно найти внутренние напряжения, возникающие в образце. Инженеры обычно используют это явление как способ определения напряжений в деталях, форма которых трудно поддается расчету.
Еще один интересный пример — двойное лучепреломление в жидкостях. Рассмотрим жидкость, состоящую из длинных асимметричных молекул, которые несут вблизи своих концов распределенный положительный или отрицательный заряд, т. е. молекулы являются электрическими диполями. Сталкиваясь, молекулы в жидкости принимают любую ориентацию, причем какого-либо преимущественного направления ориентации не существует. Но если приложить электрическое поле, молекулы начнут выстраиваться вдоль поля и в этот самый момент жидкость становится двоякопреломляющей средой. Взяв два поляроида и прозрачную ячейку с жидкостью такого сорта, можно создать устройство, которое пропускает свет только при включении электрического поля. В результате мы получаем электрический переключатель для света, который называют ячейкой Керра. А сам эффект, когда в жидкости возникает двойное лучепреломление под действием электрического поля, называется эффектом Керра.
§ 4. Поляризаторы
До сих пор мы говорили о средах, показатель преломления которых различен для разных направлений поляризации падающего светового пучка. Большое значение для практических применений имеют и другие среды, у которых в зависимости от поляризации света меняется не только показатель преломления, но и коэффициент поглощения. Как и в случае двойного лучепреломления, легко понять, что поглощение может зависеть от направления вынужденных колебаний зарядов только в анизотропных средах. Первый, старый, ставший уже знаменитым пример — это турмалин, а другой — поляроид. Поляроид состоит из тонкого слоя маленьких кристаллов герапатита (соль йода и хинина), выстроенных своими осями параллельно друг другу. Эти кристаллы поглощают свет, когда колебания происходят в одном каком-то направлении, и почти не поглощают света, когда колебания совершаются в другом направлении.
Направим на поляроид пучок света, поляризованный под углом q к его оси. Какая интенсивность будет у пучка, прошедшего через поляроид? Разложим наш пучок света на две компоненты: одну с поляризацией, перпендикулярной той, которая проходит без ослабления (она пропорциональна sinq), и вторую—продольную компоненту, пропорциональную cosq. Через поляроид пройдет только часть, пропорциональная cosq; компонента, пропорциональная sinq, поглотится. Амплитуда света, прошедшего через поляроид, меньше амплитуды падающего света и получается из нее умножением на cosq.
Фиг. 33.4. Отражение линейно поляризованного света под углом Врюстера.
Направление поляризации дается пунктирными стрелками: круглые точки изображают поляризацию, перпендикулярную плоскости страницы.
Интенсивность света пропорциональна квадрату cosq. Таким образом, если падающий свет поляризован под углом q к оси поляроида, пропускаемая поляризатором доля интенсивности составляет cos2q от полной. Доля интенсивности, поглощаемая в поляроиде, есть, разумеется, sin2q.
Интересный парадокс возникает в следующем опыте. Известно, что два поляроида с осями, расположенными перпендикулярно друг другу, не пропускают света. Но если между такими поляроидами поместить третий, ось которого направлена под углом 45° к осям двух других, часть света пройдет через нашу систему. Как мы знаем, поляроид только поглощает свет, создать свет он не может. Тем не менее, поставив третий поляроид под углом 45°, мы увеличиваем количество прошедшего света. Вы можете сами проанализировать это явление в качестве упражнения.
Одно из интереснейших поляризационных явлений, возникающее не в сложных кристаллах и всяких специальных материалах, а в простом и очень хорошо знакомом случае,— это отражение от поверхности. Кажется невероятным, но при отражении от стекла свет может поляризоваться, и объяснить физически такой факт весьма просто. На опыте Брюстер показал, что отраженный от поверхности свет полностью поляризован, если отраженный и преломленный в среде лучи образуют прямой угол. Этот случай показан на фиг. 33.4.
Если падающий луч поляризован в плоскости падения, отраженного луча не будет совсем. Отраженный луч возникает только при условии, что падающий луч поляризован перпендикулярно плоскости падения. Причину этого явления легко понять. В отражающей среде свет поляризован перпендикулярно направлению движения луча, а мы знаем, что именно движение зарядов в отражающей среде генерирует исходящий из нее луч, который называют отраженным. Появление этого так называемого отраженного луча объясняется не просто тем, что падающий луч отражается; мы теперь уже знаем, что падающий луч возбуждает движение зарядов в среде, а оно в свою очередь генерирует отраженный луч.
Из фиг. 33.4 ясно, что только колебания, перпендикулярные плоскости страницы, дают излучение в направлении отраженного луча, а следовательно, отраженный луч поляризован перпендикулярно плоскости падения. Если же падающий луч поляризован в плоскости падения, отраженного луча не будет совсем.
Это явление легко продемонстрировать при отражении линейно поляризованного луча от плоской стеклянной пластинки. Поворачивая пластинку под разными углами к направлению падающего поляризованного луча, можно заметить резкий спад интенсивности при значении угла, равном углу Брюстера. Это падение интенсивности наблюдается только в том случае, когда плоскость поляризации совпадает с плоскостью падения. Если же плоскость поляризации перпендикулярна плоскости падения, заметного спада интенсивности отраженного света не наблюдается.
§ 5. Оптическая активность
Интереснейший поляризационный эффект был обнаружен в материалах, молекулы которых не обладают зеркальной симметрией; это молекулы в виде штопора, перчатки с одной руки или вообще какой-то формы, которая при отражении в зеркале переходит в другую форму, подобно тому как перчатка с левой руки в этом случае принимает вид перчатки с правой. Предположим, что все вещество состоит из молекул одной формы, т. е. в веществе нет молекул, которые являлись бы зеркальными отражениями других. Тогда в этом веществе возникает замечательное явление, называемое оптической активностью,— направление поляризации линейно поляризованного света при прохождении через вещество поворачивается вокруг оси пучка.
Чтобы разобраться в явлении оптической активности, надо вывести ряд формул, но суть дела можно понять и качественно, без всяких вычислений. Возьмем асимметричную молекулу в форме спирали, показанную на фиг. 33.5. Оптическая активность появляется не обязательно для молекул именно такой формы, но пример спирали наиболее прост и типичен для случая, когда нет зеркальной симметрии.
Фиг. 33.5. Молекула, форма которой не обладает зеркальной симметрией.
На молекулу падает пучок света, линейно поляризованный в направлении оси у.
Пусть на молекулу падает луч света, линейно поляризованный вдоль оси у, тогда электрическое поле вызывает движение зарядов вверх и вниз по спирали, так что в направлении у возникает ток и происходит излучение электрического поля Еу, поляризованного опять-таки вдоль оси у. Если, однако, электроны могут двигаться только вдоль спирали, появится составляющая тока вдоль оси х. Когда ток течет вверх по спирали, в точке Z1 он движется к плоскости рисунка, а в точке Z1+A — от плоскости (здесь А — диаметр молекулярной спирали). Казалось бы, x-составляющая тока не дает никакого излучения, потому что на противоположных сторонах витка спирали ток течет в прямо противоположном направлении. Однако если взять x-составляющую электрического поля, приходящего в точку z = z2, мы увидим, что ток в точке z = z1+ А и ток в точке z = z1 создают поля в точке z2 с интервалом времени А/с и, следовательно, с разностью фаз л+шА1с. Поскольку разность фаз в точности не равна л, поля не могут взаимно погаситься и остается небольшая ж-компонента электрического поля, вызванная движением электронов в молекуле, хотя первоначальное падающее поле имело только y-компоненту. Складывая малую компоненту по оси х и большую компоненту по оси y, получаем результирующее поле под небольшим углом к оси у (первоначальному направлению поляризации). При движении луча света через среду направление поляризации поворачивается вокруг оси луча. Нарисовав молекулы в разных положениях и определив токи, индуцированные падающим электрическим полем, можно убедиться, что появление оптической активности и направление вращения не зависят от ориентации молекул.
Примером среды, обладающей оптической активностью, является обычная патока. Для демонстрации явления берут поляроид, дающий на выходе линейно поляризованный луч, прозрачный сосуд с патокой и второй поляроид, служащий для определения вращения плоскости поляризации.
§ 6. Интенсивность отраженного света
Рассмотрим здесь количественную зависимость коэффициента отражения от угла падения. На фиг. 33.6, а показан пучок света, падающий на поверхность стеклянной пластинки, от которой он частично отражается, а остальная его часть преломляется и уходит в глубь стекла. Пусть падающий луч имеет единичную амплитуду и линейно поляризован перпендикулярно плоскости рисунка. Обозначим амплитуду отраженной волны буквой b, а амплитуду преломленной —буквой а. Отраженная и преломленная волны будут, разумеется, линейно поляризованы, а направления электрического поля в падающей, отраженной и преломленной волнах параллельны друг другу.
Фиг. 33.6. Падающая волна единичной амплитуды отражается и преломляется на поверхности стекла.
а — падающая волна поляризована по нормали к плоскости страницы; б — падающая волна поляризована в направлении, указанном пунктирной стрелкой.
На фиг. 33.6, б показана подобная же ситуация, но в предположении, что падающий луч поляризован в плоскости рисунка. Здесь через В и А обозначены соответственно амплитуды отраженной и преломленной волн.
Мы хотим вычислить интенсивности отраженного луча в обоих случаях, приведенных на фиг. 33.6. Как мы уже знаем, в случае, показанном на фиг. 33.6, б, отраженной волны не возникает, если угол между отраженным и преломленным лучами прямой, но нам хотелось бы получить количественный результат — точную формулу для амплитуд В и b как функций угла падения i. Полезно усвоить следующий принцип. Индуцированные в стекле токи генерируют две волны. Прежде всего они создают волну отражения. Далее, если бы в стекле токов не было, падающая волна прошла бы его насквозь, не меняя направления. Вспомним, что все заряды во Вселенной создают некое результирующее поле. Источник, создавший падающий пучок, дает поле единичной амплитуды, которое само по себе должно было бы проходить внутрь стекла по пунктирной линии (см. фиг. 33.6). Но это поле внутри стекла не наблюдается, а, следовательно, токи, возбуждаемые в стекле, должны излучать поле с амплитудой -1 вдоль той же пунктирной линии. Это позволяет вычислить амплитуды преломленных волн а и А.
Из фиг. 33.6, а видно, что поле с амплитудой b создается движением зарядов стекла, а внутри стекла это же движение дает поле с амплитудой а; следовательно, амплитуда b пропорциональна амплитуде а. Далее, если отвлечься от направления поляризации, можно было бы предположить, что отношение В/А равно отношению b/a, так как обе схемы на фиг. 33.6 можно считать одинаковыми. На самом деле это не совсем правильно, потому что на фиг. 33.6, б в отличие от ситуации, изображенной на фиг. 33.6, а, направления поляризаций не параллельны друг другу. В создании амплитуды В эффективно участвует только компонента А, параллельная В, т. е. Acos(i+r). Правильное соотношение пропорциональности выглядит поэтому так:
(33.1)
Теперь немного схитрим. Как мы знаем, на обоих рисунках фиг. 33.6 электрическое поле в стекле вызывает движение зарядов, которое генерирует поле с амплитудой, равной -1, поляризованное точно так же, как и в падающем луче, и распространяющееся вдоль пунктирной линии. Но из фиг. 33.6, б видно, что только перпендикулярная пунктирной линии компонента А дает полю необходимую поляризацию, тогда как на фиг. 33.6,а в создании поля на пунктирной линии эффективно участвует вся амплитуда а, поскольку ее поляризация параллельна поляризации поля с амплитудой -1. Следовательно, справедливо соотношение
(33.2)
так как обе амплитуды в левой части (33.2) создают волны с амплитудой -1.
Разделив (33.1) на (33.2), получаем
(33.3)
Проверим правильность этого результата на уже известном нам факте. Положив (i+r) =90°, из (33.3) получим B=0, что и было найдено в свое время Брюстером; таким образом, наш результат по крайней мере не содержит очевидной ошибки.
По предположению падающая волна имеет единичную амплитуду; тогда |B|2/12 есть коэффициент отражения лучей, поляризованных в плоскости падения, а |b|2/12 — коэффициент отражения лучей, поляризованных перпендикулярно плоскости падения. Отношение этих двух коэффициентов определяется с помощью формулы (33.3).
А теперь сотворим чудо и вычислим не только отношение, но и каждый коэффициент |В|2 и |b|2 в отдельности! Из закона сохранения энергии вытекает, что энергия преломленной волны должна быть равна энергии падающей волны минус энергия отраженной волны, т. е. 1-|В|2 в одном случае и 1-|b|2 —в другом. Более того, энергия света, прошедшего внутрь стекла в случае, показанном на фиг. 33.6, а, и такая же энергия в случае фиг. 33.6, б относятся как квадраты амплитуд преломленных волн: |A|2/|а|2. Возникает вопрос, возможно ли вычислить энергию волны в стекле, если кроме энергии электрического поля, вообще говоря, имеется и энергия движения атомов. Однако ясно, что любой вклад в полную энергию должен быть пропорционален квадрату амплитуды электрического поля. Следовательно,
(33.4)
Подставим сюда соотношение (33.2) и исключим A/a в написанном выражении, а величину В выразим через b с помощью формулы (33.3):
(33.5)
Здесь неизвестной величиной остается только b. Разрешая уравнение относительно |b|2, получаем
(33.6)
и, воспользовавшись (33.3), находим
(33.7)
Таким образом, мы нашли коэффициент отражения |b|2 для падающей волны, поляризованной перпендикулярно плоскости падения, и коэффициент отражения |B|2 для волны, поляризованной в плоскости падения!
Используя подобные приемы доказательства, можно пойти дальше и вывести, что b действительно. Для доказательства рассмотрим случай, когда свет приходит одновременно с обеих сторон поверхности стекла (ситуация, трудно осуществимая на опыте, но забавная в теоретическом отношении). Анализируя этот общий случай, можно убедиться в действительности величины b, откуда следует, что b=±sin(i-r)/sin(i+r). Если взять очень тонкий слой, в котором отражение происходит от обеих поверхностей, и вычислить интенсивность отраженного света, то можно установить даже знак b. Доля света, отраженного тонким слоем, нам известна, поскольку мы знаем ток, генерируемый в таком слое, и даже получили формулу для поля, создаваемого током. Эти аргументы приводят к соотношениям
(33.8)
Формулы (33.8) для коэффициентов отражения как функций углов падения и преломления называются формулами Френеля. В пределе, когда углы i и r стремятся к нулю, т. е. в случае падения
по нормали, мы получаем В2»b2»(i-r)2/(i+r)2 для обеих поляризаций, поскольку и синусы, и тангенсы в этих условиях практически равны углам. Но, как мы уже знаем, sini/sinr=n, а для малых углов i/r»n. Отсюда совсем просто вывести, что коэффициент отражения в случае падения по нормали равен
Интересно вычислить, например, коэффициент отражения для воды. В этом случае n=4/3 и коэффициент отражения равен (1/7)2» 2%. При падении лучей по нормали к поверхности от воды отражается только 2% всей энергии.
§ 7. Аномальное преломление
Последним рассмотрим поляризационное явление, которое исторически было обнаружено самым первым,— аномальное преломление света. Моряки, побывавшие в Исландии, привозили в Европу кристаллы исландского шпата (СаСО3), которые обладали тем забавным свойством, что рассматриваемые сквозь них предметы как бы двоились, т. е. получалось два изображения предмета. Это явление привлекло внимание Гюйгенса и сыграло важную роль в открытии поляризации света. Как часто бывает, найденные раньше других явления оказываются в конечном счете наиболее трудными для объяснения. Обычно лишь после того, как физическая идея становится понятной в мельчайших подробностях, можно подобрать явления, иллюстрирующие эту идею наиболее просто и наглядно.
Аномальное преломление представляет собой частный случай уже изученного нами явления двойного лучепреломления. Аномальное преломление возникает тогда, когда Оптическая ось, т.е. большая ось асимметричных молекул, не параллельна поверхности кристалла.
На фиг. 33.7 изображены два двоякопреломляющих кристалла и показано направление оптической оси. На верхнем рисунке падающий луч линейно поляризован в направлении, перпендикулярном оптической оси кристалла. Когда луч попадает на поверхность кристалла, каждая точка поверхности служит источником новой волны, распространяющейся внутрь кристалла со скоростью v┴ (скоростью света в кристалле, соляризации которого перпендикулярна направлению оптической оси).
Фиг. 33.7. Путь обыкновенного луча (вверху) и путь необыкновенною луча (внизу) в ввоякопреломляющем кристалле.
Оптическая ось лежит в плоскости страницы.
Волновой фронт представляется просто огибающей всех этих маленьких сферических волн, он движется прямо сквозь кристалл. Такое поведение света считается обычным, а соответствующий луч называется обыкновенным лучом.
На нижнем рисунке фиг. 33.7 поляризация падающего луча повернута на 90°, так что оптическая ось лежит в плоскости поляризации. Рассмотрим теперь маленькие волны, идущие от поверхности кристалла; они уже не сферические, как в предыдущем случае. Свет вдоль оптической оси движется со скоростью v┴, потому что поляризация перпендикулярна оптической оси, а свет, движущийся перпендикулярно оси, распространяется со скоростью v║ поскольку поляризация и оптическая ось параллельны. В двоякопреломляющем материале v║<v┴, и на нашем рисунке выбран случай v║<v┴. Более подробный анализ показывает, что волны у поверхности кристалла имеют форму эллипсоидов, большая ось которых совпадает с оптической осью кристалла. Огибающая этих эллиптических волн — волновой фронт — движется через кристалл, как показано на нижнем рисунке фиг. 33.7. У задней поверхности кристалла луч отклоняется на тот же угол, что и у передней, и выходит параллельно падающему лучу, сместившись на некоторое расстояние. Совершенно очевидно, что этот луч не подчиняется закону Снелла и движется довольно необычно. Поэтому его называют необыкновенным лучом.
Если на аномально преломляющий кристалл направить неполяризованный пучок света, он разделится на два луча: обыкновенный, движущийся прямо через кристалл по обычным законам, и необыкновенный, который, пройдя через кристалл, смещается относительно падающего луча. Оба прошедших через кристалл луча линейно поляризованы перпендикулярно друг другу. Этот факт легко установить опытным путем, используя поляроид для определения поляризации вышедших из кристалла лучей света. Можно также подтвердить правильность нашей интерпретации, посылая на кристалл линейно поляризованный луч. Выбирая нужную ориентацию поляризации падающего пучка, мы в одном случае увидим луч, прошедший прямо сквозь кристалл, а в другом — единственный сместившийся луч.
На фиг. 33.1 и 33.2 были представлены самые разные поляризации в виде суперпозиции двух основных, а именно поляризаций по осям х и у с разными амплитудами и фазами. Вместо них можно выбрать и другие пары основных поляризаций. Один из возможных примеров представляют собой поляризации по двум перпендикулярным осям х\' и y\', повернутым относительно х и у (можно также любую поляризацию представить как суперпозицию случаев а и д на фиг. 33.2). Оказывается, эту мысль можно еще продолжить.
Фиг. 33.8. Два вектора одной длины, вращающиеся в противоположные стороны, дают при сложении вектор, направление которого не меняется, а амплитуда осциллирует.
Например, любую линейную поляризацию можно представить в виде суперпозиции правой и левой круговой поляризации с соответствующими амплитудами и фазами (случаи в и ж на фиг. 33.2), поскольку два равных вектора, вращающихся в разные стороны, при сложении дают вектор, осциллирующий вдоль прямой линии (фиг. 33.8).
Если фазы вращающихся векторов разные, прямая будет наклонена. Таким образом, все графики фиг. 33.1 можно назвать «суперпозициями равного количества право- и левополяризованного света при разных сдвигах фаз». Когда левополяризованный свет отстает по фазе от правополяризованного, направление линейной поляризации меняется. Поэтому оптически активные среды можно в некотором смысле назвать двоякопреломляющими. Свойство оптической активности можно характеризовать и по-другому, говоря, что такие среды имеют разные показатели преломления для света правой и левой круговой поляризации. Суперпозиция право- и левополяризованного света с разными амплитудами дает эллиптически поляризованный свет.
Свет с круговой поляризацией обладает интересным свойством — он переносит момент количества движения (взятый относительно направления луча). Чтобы пояснить это утверждение, предположим, что поляризованный по кругу свет падает на атом, который представляет собой гармонический осциллятор, способный колебаться в любом направлении в плоскости ху.
Фиг. 33.9. Действие света с круговой поляризацией на вращающийся ааряд.
Тогда смещение электрона по оси х отвечает компоненте поля Ех, а смещение по оси у отвечает компоненте Еу, равной по величине, но отстающей по фазе на 90°. Это означает, что электрон под действием вращающего электрического поля световой волны (фиг. 33.9) будет двигаться по окружности с угловой скоростью w.
Направление вектора смещения электрона а в зависимости от восприимчивости осциллятора к действующей на него силе не обязательно совпадает с направлением силы qеЕ, но тем не менее оба вектора вращаются одновременно друг с другом. Напряженность поля Е, вообще говоря, имеет компоненту, перпендикулярную смещению электрона а, так что над системой совершается работа, а кроме того на нее действует крутящий момент т.. Работа, которую он совершает в 1 сек, равна tw. За период Т системе передается энергия twТ, причем tТ есть момент количества движения, поглощаемый вместе с энергией излучения. Мы видим, таким образом, что луч света правой круговой поляризации, энергия которого равна о, переносит момент количества движения (вектор которого лежит вдоль направления распространения луча), равный по величине о /w. Действительно, если луч правополяризованного света поглощается веществом, поглотителю передается порция момента количества движения, равная о/w. Левополяризованный свет несет момент противоположного знака, т. е. - о /w.
Глава 34
РЕЛЯТИВИСТСКИЕ ЯВЛЕНИЯ В ИЗЛУЧЕНИИ
§ 1, Движущиеся источники
§ 2, Определение „кажущегося\" движения
§ 3. Синхротронное излучение
§ 4. Космическое синхротронное излучение
§ 5. Тормозное излучение
§ 6. Эффект Допплера
§ 7. Четырех» вектор (ω, k)
§ 8. Аберрация
§ 9. Импульс световой волны
§ 1. Движущиеся гюточиики
В этой главе мы расскажем еще о ряде эффектов, связанных с излучением, и на этом закончим изложение классической теории света. Проведенный нами в предыдущих главах анализ световых явлений был достаточно полным и подробным. Однако мы не коснулись одного важного в приложениях процесса электромагнитного излучения — мы не исследовали поведения радиоволн в ящике с отражающими стенками размером порядка длины волны или радиоволн, пропускаемых через длинную трубу. Явления, возникающие в так называемых полых резонаторах и волноводах, мы обсудим позднее, причем прежде мы их проиллюстрируем на другом физическом примере — на примере звука. А в остальном изучение классической теории света заканчивается этой главой.
Для всех эффектов, о которых здесь пойдет речь, характерно то, что они связаны с движением источника. Мы не будем больше предполагать, что смещение источника незначительно и его движение происходит с относительно малой скоростью возле фиксированной точки.
Вспомним, что, согласно основным законам электродинамики, электрическое поле на больших расстояниях от движущегося заряда дается формулой
(34.1)
Определяющей величиной здесь является вторая производная единичного вектора ед\' , направленного к кажущемуся положению заряда. Единичный вектор характеризует положение заряда, конечно, не в тот же момент времени,
Ф и г. 34.1. Траектория движущегося заряда.
Истинное положение в момент времени t есть Т, положение при учете запаздывания есть А.
а то место, где находился бы заряд, если учесть конечную скорость передачи информации от заряда к наблюдателю.
Вместе с электрическим полем возникает магнитное поле, направленное всегда перпендикулярно электрическому и кажущемуся положению заряда. Оно дается формулой
(34.2)
Мы рассматривали до сих пор случай нерелятивистских скоростей, когда движением в направлении источника можно было пренебречь. Обратимся теперь к общему случаю произвольных скоростей и посмотрим, какие эффекты возникают в этих условиях. Итак, пусть движение происходит с любой скоростью, но расстояние от детектора до источника по-прежнему велико.
В гл. 28 мы уже говорили, что в производную d2eR\' \'/dt2 входит только изменение направления еR\'. Пусть заряд находится в точке с координатами (х, у, z) и ось z лежит вдоль линии наблюдения (фиг. 34.1). В данный момент времени т координаты заряда есть x(т), y(т) и z(т)- Расстояние R с большой точностью равно .R(т) = r0 + z(т). Направление вектора еR\' зависит главным образом от х и у и почти совсем не зависит от z. Поперечные компоненты единичного вектора равны x/R и y/R; дифференцируя их, мы получаем члены, содержащие R2 в знаменателе:
Таким образом, на достаточно больших расстояниях существенны только члены с производными х и у. Отсюда
(34.3)
где R0 примерно равно расстоянию до заряда q; определим его как расстояние ОР до начала координат (х, у, z). Итак, электрическое поле равно константе, умноженной на очень простую величину — производную координат х и у по t. (Математически можно назвать их поперечными компонентами вектора положения заряда r, но ясности от этого не прибавится.)
Конечно, нужно всегда помнить, что координаты берутся не в момент наблюдения, а с учетом запаздывания. В данном случае запаздывание зависит и от z (т). Чему равно время запаздывания? Обозначим время наблюдения через t (это время в точке наблюдения Р), тогда время т, которое в точке А соответствует времени t, не будет совпадать с t, а отстает от него на промежуток времени, необходимый свету, чтобы пройти все расстояние от заряда до точки наблюдения. В первом приближении время запаздывания равно R0/c, т. е. постоянной (что неинтересно), а в следующем приближении должно зависеть от z-координаты положения заряда в момент t, потому что для заряда q, сдвинутого немного назад, запаздывание увеличивается. Этим эффектом мы раньше пренебрегали, если теперь учесть его, то мы получим формулу, пригодную для любых скоростей. Нам остается выбрать определенное значение t, вычислить с его помощью т и найти х и у в момент времени t. Запаздывающие значения х и у обозначим через х\' и y\', вторые производные от них определяют
поле.
Итак, t определяется из уравнений
(34.4)
Эти уравнения довольно сложны, но их решение легко получить геометрическим путем. Чертеж даст вам возможность качественно почувствовать, как возникают соотношения, хотя для вывода точных результатов понадобится преодолеть еще немало математических сложностей.
§ 2. Определение «кажущегося» движения
Написанное выше уравнение можно упростить довольно интересным способом. Опустим неинтересный для нас постоянный член R0/c (это означает только, что мы изменяем начало отсчета времени t на постоянный отрезок) и запишем
(34.5)
Нам нужно найти х\' и у\' как функции t, а не т, и это достигается следующим образом: как подсказывает уравнение (34.5), нужно взять истинное движение заряда и добавить время т, умноженное на константу (скорость света). На фиг. 34.2 показано, что это означает. Возьмем истинную траекторию заряда (показанную слева) и представим себе, что по мере движения заряд удаляется от точки Р со скоростью с (здесь нет каких-либо релятивистских сокращений и подобных вещей; это просто математическое добавление ст). Таким путем получится новая траектория, где по оси абсцисс отложено ct, как показано на рисунке справа. (На рисунке изображена траектория довольно сложного движения в плоскости, но движение может происходить не только в плокости.)
Фиг. 34.2. Геометрический способ определения x\'(t) из уравнения (34.5.).
Смысл приведенной процедуры состоит в том, что горизонтальное расстояние в правой части фиг. 34.2 в отличие от левой оказывается равным не z, a z+cт, т. е. ct. Мы нашли, таким образом, график изменения х\' (и у\') в зависимости от t\\ Осталось только определить ускорение на кривой, т. е. продифференцировать ее дважды. Отсюда окончательно заключаем: чтобы найти электрическое поле движущегося заряда, нужно взять траекторию движения и заставить двигаться каждую ее точку от точки наблюдения со скоростью с; полученная кривая дает положения х\' и у\' как функцию t. Ускорение на этой кривой определит электрическое поле в зависимости от t. Можно, если угодно, представить себе, что вся эта «твердая» кривая движется вперед со скоростью с сквозь плоскость зрения, так что точка пересечения с плоскостью зрения имеет координаты х\' и у\'. Ускорение этой точки и определит электрическое поле! Полученное решение будет не менее точно, чем формула, из которой мы исходили,— это просто ее геометрическое представление.
Если источник совершает относительно медленное движение, как, например, медленно колеблющийся вверх и вниз осциллятор, то при растягивании этого движения со скоростью света получится простая синусоидальная кривая. Отсюда можно получить формулу для поля, создаваемого осциллирующим зарядом, которую мы видели неоднократно.
Более интересный пример — это электрон, движущийся по окружности со скоростью, близкой к скорости света. Если наблюдатель находится в плоскости движения электрона, запаздывающее движение x\'(t) имеет для него вид, изображенный на фиг. 34.3. Что это за кривая? Если мы представим себе радиус-вектор, проведенный из центра окружности к заряду, и если мы продолжим эти радиальные линии чуть-чуть за заряд (совсем капельку, если заряд движется быстро), то мы придем к точке, которая движется со скоростью света с. Поэтому результирующее движение есть движение заряда, прикрепленного к колесу, которое катится назад (без скольжения) со скоростью с;
Фиг. 34.3. Кривая зависимости х\' (t) для частицы, вращающейся по окружности с постоянной скоростью v = 0,94c.
это дает нам кривую, очень похожую на циклоиду, называется она гипоциклоидой.
Когда заряд движется по окружности со скоростью, близкой к скорости света, пики на кривой становятся очень острыми, а при скорости, равной скорости света, они были бы бесконечно острыми. «Бесконечно острые» пики! Очень интересно; это значит, что вблизи такого пика вторая производная очень велика. Один раз в течение каждого периода возникает мощный и резкий импульс электрического поля. Ничего похожего в случае нерелятивистского движения не бывает, там электрическое поле в течение всего периода принимает значения примерно одного и того же порядка. Вместо этого в случае больших скоростей там возникают резкие импульсы электрического поля с интервалом времени 1/Т0, где Т0 — период обращения. Это сильное электрическое поле излучается в узком конусе около направления движения заряда. Когда же заряд удаляется от точки наблюдения Р, производная кривой мала и излучение в направлении Р очень слабое.
§ 3 Синхpoтpoннoe излyчeнue
В синхротроне электроны движутся по окружности с большими скоростями, близкими к скорости света, и описанное излучение можно увидеть как настоящий свет! Обсудим это явление более подробно.
Электроны в синхротроне движутся по окружности в однородном магнитном поле. Давайте установим прежде всего, почему они движутся по окружности. Согласно уравнению (12.10), сила, действующая на частицу в магнитном поле, равна
F = q·vXB (34.6)
и направлена перпендикулярно полю и скорости. Как обычно, сила равна скорости изменения импульса со временем. Если поле направлено вверх от плоскости страницы, импульс и сила
Фиг. 34.4. Движение заряженной частицы в однородном магнитном поле по окружности (или по спирали).
располагаются так, как показано на фиг. 34.4. Поскольку сила перпендикулярна скорости, кинетическая энергия, а значит, и абсолютная величина скорости остаются постоянными. Действие магнитного поля сводится только к изменению направления движения. За малый промежуток времени Dt вектор импульса изменится на величину Dр = F·Dt, направленную перпендикулярно импульсу, т. е. вектор импульса р повернется на угол Dq = Dр/р =qvBDt/p, так как |F| = qv·|В|. Но за то же время электрон пройдет расстояние Ds = vDt. Две прямые, АВ и CD, очевидно, пересекутся в точке О, для которой ОА=ОС=R, причем Ds = RDq. Комбинируя написанные формулы, мы получаем RDq/Dt=Rw=v=qvBR/p, откуда
(34.7)
(34.8)
Мы можем повторить это рассуждение в любой последующий промежуток времени и придем, таким образом, к заключению, что частица в магнитном поле должна двигаться по окружности, имеющей радиус R, с угловой скоростью w.
Равенство (34.7), выражающее импульс через произведение заряда, радиуса и магнитного поля, представляет собой очень важный закон, находящий весьма широкое применение. Он имеет большое практическое значение, потому что при наблюдении движения частиц с одинаковыми зарядами в магнитном поле позволяет измерить радиусы кривизны траекторий; зная, кроме того, величину магнитного поля, можно определить, таким образом, импульсы частиц. Умножив обе части (34.7) на с и выразив заряд q через заряд электрона, мы получаем формулу для импульса в единицах электронволът (эв):
(34.9)
Здесь В, R и скорость света определены в системе единиц СИ, скорость света в этой системе равна численно 3·108.
Единица измерения магнитного поля в системе СИ называется вебер на метр квадратный. Часто употребляют более старую единицу — гаусс (гс). Один вебер/м2 равен 104 гс. Чтобы дать представление о величине магнитных полей, приведем некоторые цифры. Самое сильное магнитное поле, которое можно создать в железе, порядка 1,5·104 гс; при больших полях использовать железо становится невыгодным. В настоящее время электромагниты с обмоткой из сверхпроводящей проволоки позволяют получать постоянное поле напряженностью свыше 105 гс, т. е. 10 ед. СИ. Напряженность магнитного поля Земли у экватора составляет несколько десятых гаусса.
Обратимся снова к формуле (34.9) и возьмем для примера синхротрон, который разгоняет частицы до миллиарда электрон-вольт, т. е. дает частицы с рс, равным 109 эв (ниже мы определим и энергию частиц). Пусть В = 104 гс, или 1 ед. СИ, т. е. поле достаточно сильное, тогда R оказывается равным 3,3 м. Синхротрон КАЛТЕХа имеет радиус 3,7 м, поле чуть больше взятого нами, а энергию 1,5 млрд. эв (или Гэв), т. е. порядок всех величин тот же самый. Теперь становится понятным, почему синхротроны имеют такие размеры.
Выше мы брали импульс частиц; полная же энергия, включающая энергию покоя, дается формулой W = Ц(р2с2 +m2с4). Энергия покоя электрона mс2 равна 0,511·106 эв, поэтому при импульсе рс — 109 эв можно пренебречь величиной m2с4 и для всех практических целей пользоваться формулой W=рс, справедливой в случае релятивистских скоростей. Фактически нет никакой разницы, когда мы говорим, что энергия электрона равна 1 Гэв или что импульс электрона, умноженный на с, равен 1 Гэв. Когда W=109 эв, то, как легко показать, скорость частицы равна скорости света с точностью до одной восьмимиллионной!
Теперь вернемся к излучению, испускаемому такой частицей. Двигаясь по окружности с радиусом 3,3 м и длиной 20 м,частица делает один оборот примерно за то же время, за которое свет проходит 20 м. Поэтому длина волны испускаемого излучения, казалось бы, равна 20 м, т. е. лежит в области коротких радиоволн. Но, как мы уже говорили, возникают пики излучения (см. фиг. 34.3) и из-за того, что скорость электрона отличается от скорости света с на одну восьмимиллионную, ширина пиков пренебрежимо мала по сравнению с расстоянием между ними. Ускорение, определяемое второй производной по времени, приводит к появлению «фактора сокращения» 8·106 в квадрате, потому что масштаб времени уменьшается в 8·106 раз в области пика и входит он дважды. Поэтому эффективная длина волны должна быть в 64·1012 раз меньше 20 м, что соответствует уже области рентгеновских лучей. (На самом деле эффект определяется значением не в самом пике, а некоторой областью около пика. Это дает вместо квадрата степень 3/2, но все равно приводит к длинам волн, несколько меньшим, чем в видимом свете.)
Фиг. 34.5, Падающий на решетку импульс света в форме острого пика после отражения дает в разных направлениях лучи различной окраски.
Итак, если даже медленно движущийся электрон излучает радиоволны длиной порядка 20 м, то релятивистские эффекты сокращают длину волны настолько, что мы можем увидеть излучение! Очевидно, свет должен быть поляризован перпендикулярно однородному магнитному полю.
Предположим далее, что мы направили подобный пучок света (импульсы излучения возникают через большие промежутки времени, так что для простоты возьмем один такой импульс) на дифракционную решетку, состоящую из множества рассеивающих линий. Какая картина возникнет после прохождения излучения через решетку? (Казалось бы, мы должны увидеть красные, синие полосы света и т. д., если вообще мы будем видеть свет.) А что мы увидим на самом деле?
Импульс излучения попадает прямо на решетку, и все осцилляторы на линиях решетки начинают одновременно бешено колебаться туда и обратно. При этом они излучают в разных направлениях, как показано на фиг. 34.5. Но точка Р расположена ближе к одному концу решетки, и поэтому излучение попадает в нее сначала от А, потом от В и т. д., наконец, последним приходит импульс от самой крайней линии. В итоге совокупность всех отраженных волн принимает такой вид, как показано на фиг. 34.6,а. Это электрическое поле, состоящее из целого ряда импульсов, очень походит на синусоидальную волну, причем длина волны есть расстояние между соседними импульсами, точь-в-точь как у монохроматической волны, падающей на дифракционную решетку! Таким образом, мы действительно увидим свет окрашенным. Но те же аргументы, казалось бы, позволяют думать, что «импульсы» любой формы создадут видимый свет.
Фиг. 34.6. Суммарное электрическое поле от совокупности острых импульсов (а) и импульсов гладкой формы (б).
Фиг. 34.7. Крабовидная туманность. Снято без фильтра .
Нет, это не так. Предположим, что пики гораздо более гладкие; давайте снова сложим все рассеянные волны, разделенные небольшими временными интервалами (фиг. 34.6,б). Тогда мы увидим, что поле почти не испытывает колебаний и представляет собой весьма гладкую кривую, потому что каждый импульс мало меняется за промежуток времени между приходом двух соседних рассеянных волн.
Электромагнитное излучение, испускаемое релятивистской заряженной частицей, которая вращается в магнитном поле, называется синхротронным излучением. Происхождение этого названия очевидно, хотя такое излучение возникает не только в синхротронах и даже не только в условиях Земли. Весьма интересно и увлекательно то, что оно возникает и во Вселенной!
§ 4. Космическое еинхротронное излучение
К 1054 г. нашей эры китайская и японская цивилизации были одними из самых передовых в мире: китайцы и японцы уже тогда следили за явлениями во Вселенной, и в этот самый год они зафиксировали замечательное событие — внезапное появление яркой звезды. (Любопытно, что ни один из европейских монахов, которые написали в средние века столько книг, и не подумал отметить это событие.) Как выглядит родившаяся звезда в настоящее время, показано на фиг. 34.7. Снаружи видно большое количество красных нитей, которые создаются атомами тонкой газовой оболочки, излучающими при своих
Фиг. 34.8. Крабовидная туманность.
Снято через синий фильтр и поляроид, а — электрический вектор направлен вертикально; б — электрический вектор направлен по горизонтали.
собственных частотах; спектр излучения состоит из ярких отдельных линий. Красный цвет обязан своим появлением азоту. А вот в центре светится странное размазанное пятно, излучающее в непрерывном спектре частот, т. е. частоты, свойственные разным атомам, никак не выделены. Пятно это — вовсе не облако пыли, отражающее свет от соседних звезд, что могло бы тоже привести к непрерывному спектру излучения. Сквозь это образование можно увидеть звезды, значит, оно прозрачное и само излучает свет.
На фиг. 34.8 показан тот же объект, но теперь снятый в лучах участка спектра, где нет ярких линий, т. е. фактически видна только центральная часть. Кроме того, снимки делались через поляризатор, и два представленных снимка соответствуют двум взаимно перпендикулярным ориентациям поляризатора. Легко заметить, что снимки разные! Таким образом, приходящий к нам свет поляризован. Причина этого эффекта предположительно состоит в том, что в туманности имеется местное магнитное поле, где крутится множество очень быстрых электронов.
Мы только что объяснили, каким образом электроны движутся в поле по окружности. Если к этому движению добавить любое равномерное движение в направлении поля, излучение поля не изменится, поскольку сила qvXВ не имеет компоненты вдоль поля, а синхротронное излучение (как мы уже отмечали) всегда поляризовано под прямым углом к направлению проекции магнитного поля на плоскость зрения.
Сопоставляя оба эти факта, мы видим, что на участке, где один снимок светлый, а другой темный, электрическое поле света должно быть полностью поляризовано в одном направлении. Это значит, что перпендикулярно указанному направлению имеется магнитное поле, а в тех участках, где второй снимок имеет светлое пятно, магнитное поле направлено по-другому. При внимательном изучении фиг. 34.8 можно заметить, что вдесь имеется, грубо говоря, ряд «линий», идущих в одном направлении на первом снимке и в перпендикулярном к нему направлении на втором снимке. Изображения имеют как бы волокнистую структуру. Можно думать, что магнитные силовые линии продолжаются довольно далеко в одном и том же направлении и поэтому, вероятно, возникают вытянутые участки магнитного поля, где электроны закручиваются в одном направлении, а в областях с другим направлением поля электроны закручиваются по-иному.
Почему энергия электронов остается большой столь долгое время? Ведь с момента взрыва прошло уже 900 лет; как же получилось, что электроны крутятся все так же быстро? Причина такой продолжительности всего процесса в целом и сохранения электронами их большой энергии, в частности, до сих пор еще не совсем понятна.
§ 5. Тормозное излучение
Мы кратко расскажем еще об одном интересном эффекте, связанном с излучением быстродвижущейся частицы. По существу, этот процесс очень похож на только что описанное излучение. Предположим, что имеется материал, содержащий заряженные частицы и мимо пролетает очень быстрый электрон (фиг. 34.9). Тогда под действием электрического поля ядра электрон будет притягиваться и ускоряться, и на траектории появится изгиб. Чему будет равно излучение электрического поля в направлении С, если скорость электрона близка к скорости света? Вспомним наше правило: мы должны взять истинное движение, перенести его назад со скоростью с, и тогда мы получим кривую, производная которой определяет электрическое поле. Электрон примчался к нам со скоростью v, следовательно, при переносе получается обратное движение и вся траектория сожмется во столько раз, во сколько с—v меньше с. Таким образом, при 1-v/c<<1 кривизна кажущейся траектории в точке В\' очень велика, и, взяв вторую производную, мы получаем мощное излучение в направлении движения. Следовательно, при прохождении через среду электроны большой энергии излучают вперед. Это явление называется тормозным излучением. На практике синхротроны используются не столько для получения электронов большой
Фиг. 34.9. Быстрый электрон, пролетающий вблизи от ядра, излучает в направлении своего движения.
энергии (возможно, если бы их лучше умели выводить из синхротрона, мы бы этого не стали говорить), сколько для рождения энергичных фотонов, или у~квантов, в процессе прохождения электронов через плотные мишени, где они испускают тормозное излучение.
§ 6. Эффект Допплера
Рассмотрим теперь ряд других эффектов, связанных с движением источника. Пусть источник представляет собой покоящийся атом, колеблющийся со своей обычной частотой ш0. Частота наблюдаемого света тогда будет равна w0. Но возьмем другой пример: пусть такой же атом колеблется с частотой w1 и в то же время весь атом, весь осциллятор как целое движется со скоростью v по направлению к наблюдателю. Тогда истинное движение в пространстве будет таким, как изображено на фиг. 34.10,а. Используем наш обычный прием и добавим ст, т. е. сместим всю кривую назад и получим колебания, представленные на фиг. 34.10,6. За промежуток времени т осциллятор проходит расстояние vт, а на графике с осями х\' и у\' соответствующее расстояние равно (с-v)t. Таким образом, число колебаний с частотой ш1, которое укладывалось в интервал Ат, на новом чертеже укладывается теперь уже в интервал Dt = (1-v/c) Dt; осцилляции сжимаются, и, когда новая кривая будет двигаться мимо нас со скоростью с, мы увидим свет более высокой частоты, увеличенной за счет
фактора сокращения (1-v/c). Итак, наблюдаемая частота равна
(34.10)
Можно, конечно, объяснить этот эффект и другими способами. Пусть, например, тот же атом испускает не синусоидальную волну, а короткие импульсы (пип, пип, пип, пип) с некоторой частотой ш1. С какой частотой мы будем их воспринимать? Первый импульс к нам придет спустя определенное время, а второй импульс придет уже через более короткое время, потому что атом за это время успел к нам приблизиться. Следовательно, промежуток времени между сигналами «пип» сократился за счет движения атома. Анализируя эту картину с геометрической точки зрения, мы придем к выводу, что частота импульсов увеличивается в 1/(1-v/c) раз.
Фиг, 34.10. Движение осциллятора в плоскости х—z и в плоскости x\'—t.
Будет ли наблюдаться частота w= w0/(1-v/c), если атом с собственной частотой ш0 движется со скоростью v к наблюдателю? Нет. Нам хорошо известно, что собственная частота движущегося атома w1 и частота покоящегося атома w0 — не одно и то же из-за релятивистского замедления хода времени. Так что если w0 — собственная частота покоящегося атома, то частота движущегося атома будет равна
(34.11)
Поэтому наблюдаемая частота w окончательно равна
(34.12)
Изменение частоты, возникающее в таком случае, называется эффектом Допплера: если излучающий объект движется на нас, излучаемый им свет кажется более синим, а если он движется от нас, свет становится более красным.
Приведем еще два других вывода этого интересного и важного результата. Пусть теперь покоящийся источник излучает с частотой w0, а наблюдатель движется со скоростью v к источнику. За время t наблюдатель сдвинется на новое расстояние vt от того места, где он был при t = 0. Сколько радиан фазы пройдет перед наблюдателем? Прежде всего, как и мимо любой фиксированной точки, пройдет ю0t, а также некоторая добавка за счет движения источника, а именно vtk0 (это есть число радиан на метр, умноженное на расстояние).
Отсюда число радиан за единицу времени, или наблюдаемая частота, равно w1=w0+k0v. Весь этот вывод был произведен с точки зрения покоящегося наблюдателя; посмотрим, что увидит движущийся наблюдатель. Здесь мы снова должны учесть разницу в течении времени для наблюдателя в покое и движении, а это значит, что мы должны разделить результат на Ц( 1-v2/с2). Итак, пусть k0 есть волновое число (количество радиан на метр в направлении движения), а со0 — частота; тогда частота, регистрируемая движущимся наблюдателем, равна