Настройки шрифта

| |

Фон

| | | |

 

Предисловие редакторов перевода

Автор настоящей книги, профессор математики Нью-Йоркского университета Морис Клайн, не нуждается в специальном представлении советскому читателю: четыре года назад в нашей стране была издана его книга «Математика. Утрата определенности» (М.: Мир, 1984). Как и у себя на родине, она вызвала у нас большой интерес, что во многом обусловлено литературным и педагогическим талантом автора, его эрудицией, широтой и несомненной важностью рассматриваемых в книге вопросов, касающихся философии математики в контексте ее исторического развития.

Все эти достоинства в равной мере присущи и второй издаваемой на русском языке книге М. Клайна «Математика. Поиск истины». Как и предыдущая книга, она отличается откровенной полемичностью, проблемной заостренностью. Такая манера повествования может вызвать у иного читателя чувство замешательства и даже протеста. Но именно к этому и стремится автор: его задача состоит в том, чтобы побудить читателя к самостоятельным размышлениям, а не снабжать готовыми ответами на возникающие вопросы. Здесь, пожалуй, было бы уместно привести критерий ценности книги, предложенный известным американским социологом О. Тоффлером, согласно которому о достоинствах книги лучше всего судить по тому, в какой степени она порождает у читателя хорошие вопросы, т.е. насколько стимулирует творческую активность читателя, побуждает его к конструктивному диалогу по существу тех или иных проблем. Думается, что с подобных позиций и подойдет к оценке книги М. Клайна заинтересованный читатель, взявший на себя труд внимательно ознакомиться с ней.

Такого рода фразами обычно и завершаются предисловия. Однако нам бы не хотелось, чтобы читатель воспринял ее просто как некий литературный штамп, уныло кочующий из одного книжного предисловия в другое, и посему мы сочли целесообразным добавить к сказанному ряд замечаний. Дело в том, что, воспринимая содержание книги Клайна фрагментарно, по главам, читатель может впасть в заблуждение относительно подлинных целей ее автора. А эта цель заключается в том, чтобы продемонстрировать, как математика реально действует в качестве исторически развивающегося метода научного познания, определить ее роль в общей системе человеческой культуры. Автор показывает, что математика как метод познания физического мира обладает исключительной мощью и эффективностью, причем эта эффективность столь высока, что вызывает удивление у всякого, кто хоть однажды попытался найти ей какое-то разумное объяснение.

Удивительная, или, как острее выразился Юджин Вигнер, «непостижимая эффективность математики в естественных науках», — вот, собственно, главный вопрос, на котором сосредоточено внимание М. Клайна. И дать однозначный ответ на этот вопрос — очень непростая задача. Общих философских утверждений о том, что существует объективная реальность, а также «приблизительно верно и активно» отражающее ее человеческое сознание, общих рассуждений о диалектике познания и практике, об относительной и абсолютной истинах и т.д. оказывается недостаточно для того, чтобы дать удовлетворительный ответ на вопрос о причинах «непостижимой эффективности» математики. Говоря об удовлетворительном ответе, мы в данном случае имеем в виду тот «социальный заказ», который в настоящее время ставят перед исследованиями в области философских проблем естествознания (в частности, философских проблем физики и математики) практика современного научного познания, прежде всего современные широкомасштабные комплексные исследования междисциплинарного характера. К числу таковых относятся, например, задачи глобального моделирования (с помощью ЭВМ) экологических систем. В рамках этих исследований возрос об эффективности математики приобретает особую остроту, поскольку здесь эта наука призвана выступать в качестве одного из основных объединяющих начал научно-познавательной деятельности крупных коллективов ученых, представителей разных дисциплин, в том числе и таких, которые традиционно принято считать чуждыми математике. Поэтому в настоящее время проблема понимания эффективности математики как метода познания представляет собой не только чисто академический интерес. Но, повторяем, удовлетворительного ответа на те вопросы, которые возникают в связи с этой проблемой, мы пока не имеем. Не претендует на такой ответ и М. Клайн в своей книге «Математика. Поиск истины». Математика для него — это не просто созданное человеком мощное орудие познания, а средство, которое позволяет нам осуществлять надежный контакт с внешней объективной реальностью, в огромной степени расширяя пределы информационных каналов, непосредственно связанных с нашими органами чувств.

Подобный взгляд на математику вполне созвучен с подходом материалистической диалектики. Сказанное, разумеется, не означает, что мы полностью разделяем все утверждения и оценки Клайна, даже с учетом их откровенной полемичности. Понимая и принимая полемическую заостренность как приглашение к разговору, мы все же не можем согласиться с автором, когда он — пусть даже ради остроты полемики — до такой степени превозносит роль математики в физике, что практически все творцы естествознания, начиная с классического периода, эпохи Галилея, и кончая современностью, превращаются у него из физиков и естествоиспытателей в чистых математиков. Вряд ли мы окажем добрую услугу математике, если будем безмерно возвышать ее за счет других научных дисциплин или методов. Здесь мы, конечно, в первую очередь имеем в виду эксперимент, функциональный «симбиоз» которого с математикой в системе научного познания и обеспечил в конечном счете наблюдаемый ныне удивительный прогресс в развитии физики.

И еще. Излагая историю становления и развития математической мысли, автор показывает важную роль религиозных взглядов и духовных исканий ученых в процессе поиска картины мироздания. Еще недавно в нашей литературе, особенно научно-популярной, эта роль рассматривалась преимущественно в негативном плане, что было по сути нарушением диалектико-материалистического принципа историзма в анализе таких сложных явлений культуры, — как наука и религия. Критическое отношение к религиозному мировоззрению ни в коем случае не должно сводиться к его бездумному, нигилистическому отрицанию. Религиозные искания в ряде случаев служили важным стимулирующим фактором научных поисков. Но это не означает, однако, что религия была катализатором научного прогресса. Скорее наоборот — присущие ей авторитаризм и догматическое мышление выступали его тормозом. Короче говоря, отношения науки и религии на протяжении веков были весьма сложными и противоречивыми и вряд ли могут быть правильно осмыслены в прокрустовом ложе черно-белой логики.

В заключение хотелось бы еще раз подчеркнуть, что полемичность, проблемность книги Мориса Клайна делает ее очень полезной именно в наши дни, когда настоятельно, требуется учиться мыслить по-новому: творчески, непредвзято, нестандартно. Поэтому прежде всего хотелось бы порекомендовать эту книгу нашей научной молодежи. Мы надеемся, что новая работа Мориса Клайна привлечет внимание читателей различных профессий: физиков, математиков, философов, историков науки и всех, кто интересуется ролью математики в процессе познания окружающего мира и в развитии общей культуры человеческого общества.

Читатель, желающий глубже познакомиться с рассматриваемыми в книге вопросами, может обратиться к работам, указанным в списке литературы, представленном в конце книги. Авторский список по вполне понятным причинам ориентирован на англоязычного читателя, хотя некоторые из перечисленных там книг имеются в русском переводе (они соответственно указаны). Список «Цитируемая литература», составленный переводчиком, включает источники, ссылки на которые имеются в тексте (в английском оригинале книги подобные ссылки отсутствуют). Кроме того, мы сочли целесообразным дополнить авторский список рядом работ, преимущественно отечественных авторов, которые названы ниже.



В.И. Аршинов

Ю.В. Сачков




Закономерности развития современной математики. Методологические аспекты. Сб. статей. — М.: Наука, 1987.
Рузавин Г.И. Философские проблемы оснований математики. — М.: Наука, 1983.
Панов М.И. Методологические проблемы интуиционистской математики. — М.: Наука, 1984.
Манин Ю.И. Математика и физика. — М.: Знание, 1979.
Моисеев Н.Н. Математика ставит эксперимент. — М.: Наука, 1979.
Реньи А. Трилогия о математике. — М.: Мир, 1980.
Методологические проблемы математики. — Новосибирск: Наука (Сибирское отд.), 1979. В этом сборнике читатель найдет также обширную библиографию по методологическим и философским проблемам математики.


Вступление

Как мы познаем окружающий нас реальный мир? Всем нам приходится полагаться на свидетельства наших органов чувств — слуха, зрения, осязания, вкуса, обоняния, — когда мы решаем повседневные проблемы или получаем от чего-то удовольствие. Чувственные восприятия многое говорят нам о реальном мире, но в основном наши органы чувств слишком грубы. Декарт (быть может, с излишней резкостью) назвал ощущения обманом наших чувств. Правда, такие приборы и инструменты для научных исследований, как, например, телескоп, существенно расширяют границы доступного нашему чувственному восприятию, но лишь в определенных пределах.

Многие явления окружающего нас реального мира вообще скрыты от наших органов чувств. Они ничего не говорят нам, о том, что Земля вращается вокруг своей оси и обращается вокруг Солнца. Они умалчивают о природе силы, удерживающей планеты на их орбитах, об электромагнитных волнах, позволяющих нам принимать радио- и телепередачи за сотни и тысячи километров от передающей станции.

Эта книга повествует в основном не о том, что можно было бы назвать «земными» приложениями математики, например о точном определении высоты 50-этажного дома. Читатель сможет почерпнуть кое-какие сведения об ограниченных возможностях наших органов чувств, но главное внимание здесь уделено описанию того, что мы узнаем о реальностях окружающего мира посредством одной лишь математики. Не вдаваясь в изложение идей и методов самой математики, я постараюсь рассказать о том, какие черты основных явлений современного мира мы постигаем с ее помощью. Разумеется, опыт и экспериментирование играют определенную роль в нашем исследовании природы, но, как станет ясно из дальнейшего, во многих областях знания их вклад незначителен.

В XVII в. Блез Паскаль горько сетовал на беспомощность человека. Ныне созданное нашими усилиями всемогущее оружие — математика — позволяет познавать многое в окружающем нас реальном мире и овладевать им. В 1900 г., обращаясь к участникам II Международного конгресса математиков, один из величайших представителей современной математической науки Давид Гильберт заявил: «Математика — основа всего точного естествознания» ([1], с. 69). С полным основанием можно добавить, что только математика позволила получить то знание о разнообразных жизненно важных явлениях, которыми мы ныне располагаем. Многие науки по существу представляют собой свод математических теорий, скупо приправленных физическими фактами.

Вопреки впечатлению, которое обычно складывается у тех, кому довелось прослушать курс математики в стенах учебного заведения, математика — это не просто набор более или менее хитроумных приемов для решения задач. Математика открывает нам немало такого, о чем мы не знали и даже не подозревали, хотя речь идет о явлениях весьма существенных, и нередко ее выводы противоречат нашему чувственному восприятию. Математика — суть нашего знания о реальном мире. Она не только выходит за пределы чувственного восприятия, но и оказывает на него воздействие.

Благодарности

Я глубоко признателен сотрудникам издательства «Оксфорд юниверсити пресс» за тщательную работу над книгой. Хочу также поблагодарить мою жену Элен и мисс Мэрилин Маневитц, внимательно вычитавших и перепечатавших рукопись этой книги.



М. Клайн.

Бруклин, Нью-Йорк, март 1985 г.

Историческая ретроспектива: существует ли внешний мир?

Философ — это тот, кто знает нечто о том, что никто другой не знает так хорошо. Декарт
Нет такой нелепости, которую бы не изрекли философы. Цицерон
Да разве вся философия не похожа на запись, сделанную медом? На первый взгляд она выглядит великолепно. Но стоит взглянуть еще раз — и от нее остается только липкое пятно. Эйнштейн
Существует ли реальный физический мир независимо от человека? Существуют ли горы, деревья, суша, море и небо независимо от того, есть ли люди, способные воспринимать все эти объекта? Такой вопрос кажется нелепым: разумеется, существуют. Разве мы не наблюдаем окружающий мир постоянно? Разве наши органы чувств не рождают у нас непрерывно ощущения, подтверждающие существование внешнего мира? Но люди мыслящие полагают не лишним подвергнуть сомнению очевидное, даже если это сомнение разрешается еще одним подтверждением.

Обратимся прежде всего к «любомудрам», или любителям мудрости, — философам, которые на протяжении веков размышляли над различными проблемами, связанными с человеком и окружающим его миром (правда, подобно всем любящим без взаимности, философам нередко случалось быть «отвергнутыми»). Многие из величайших философов размышляли и о внешнем мире. Одни отрицали, другие допускали его существование, но испытывали серьезные сомнения относительно того, сколь глубоко мы можем познать этот мир и насколько надежно наше знание. Хотя Бертран Рассел, сам выдающийся философ, заявил в своей книге «Наше знание внешнего мира», что «философия с древнейших времен претендовала на большее, а достигла меньшего, чем любая другая область знания», полезно все же познакомиться с тем, что говорили по этому поводу хотя бы некоторые из философов. Нас будут интересовать в основном мнения тех, кто всерьез ставил под сомнение способность человека постичь окружающий мир.

Первым из древнегреческих философов, размышлявших над проблемой познания внешнего мира, был Гераклит Эфесский, живший в конце VI — начале V в. до н.э. Гераклит не отрицал существования внешнего мира, но утверждал, что все в этом мире непрерывно изменяется. Гераклит учил, что «невозможно дважды вступить в один и тот же поток», поэтому, какие бы факты мы ни собрали об окружающем нас мире, они уже в следующий миг не имеют к нему ни малейшего отношения.

Эпикур (341-270 до н. э) в отличие от Гераклита считал, что наши ощущения указывают безошибочный путь к постижению истины, и усматривал в этом фундаментальный принцип. По мнению Эпикура, именно ощущения говорят нам о том, что материя существует, что происходит движение и что реальность в конечном счете сводится к телам, состоящим из существующих в пустоте атомов. Что же касается самих атомов, то они вечны и не подвержены разрушению. Атомы неделимы и неизменны.

Интересовался проблемой внешнего мира и Платон (427-347 до н.э.), самый влиятельный философ античного периода. Платон допускал существование внешнего мира, но полагал, что мир, воспринимаемый нашими чувствами, пестр, многообразен, непрерывно меняется и ненадежен. Истинный же мир — мир идей — неизменен и непреходящ. Однако мир идей доступен не чувствам, а только разуму. Наблюдения бесполезны. В диалоге «Государство» Платон со всей определенностью утверждает, что реальное, скрывающееся за видимостью вещей, выражающее их внутреннюю сущность, есть математическое; понять реальное — значит обнажить его, отделив от видимости, а не облечь в видимость. Подчеркивая значение математики, Платон считал ее составной частью общей системы абстрактных, нематериальных, идеальных идей. Именно идеи выражают образцы совершенства, к которому стремится все на свете — и материальное, и этическое, и эстетическое. В диалоге «Государство» Платон говорит:


Глядит ли кто, разинув рот, вверх или же, прищурившись, вниз, когда пытается с помощью ощущений что-либо распознать, все равно, утверждаю я, он никогда этого не постигнет, потому что для подобного рода вещей не существует познания и человек при этом смотрит не вверх, а вниз, хотя бы он и лежал навзничь на земле или умел плавать на спине в море.
([2], с. 340.)


Плутарх в «Жизни Марцелла» сообщает, что знаменитые современники Платона Евдокс и Архит прибегали к физическим аргументам при «доказательстве» математических результатов. Платон с негодованием отвергал такого рода доказательства как подрывающие самые основы геометрии, ибо вместо чистого рассуждения они апеллируют к фактам чувственного опыта.

Отношение Платона к знанию, представляющее для нас особый интерес, наиболее наглядно проявляется в его отношении к астрономии. По его утверждению, эта наука занимается не изучением движения наблюдаемых небесных тел. Расположение звезд на небе и их видимые движения — зрелище захватывающее, но далеко не одни лишь наблюдения и объяснения движений составляют предмет истинной астрономии. Прежде чем достичь таковой, необходимо «то, что на небе, оставить в стороне», ибо истинная астрономия занимается изучением законов движения звезд по математическому небу, несовершенным изображением которого является видимое небо. В диалоге «Государство» Платон устами Сократа так говорит о предмете изучения истинной астрономии:


Эти узоры на небе, украшающие область видимого, надо признать самыми прекрасными и совершенными из подобного рода вещей, но все же они сильно уступают вещам истинным с их перемещениями относительно друг друга, происходящими с подлинной быстротой и медленностью, в истинном количестве и всевозможных истинных формах…
Значит, небесным узором надо пользоваться как пособием для изучения подлинного бытия, подобно тому, как если бы нам подвернулись чертежи Дедала или какого-нибудь иного мастера или художника, отлично и старательно вычерченные. Кто сведущ в геометрии, тот, взглянув на них, нашел бы прекрасным их выполнение, но было бы смешно их всерьез рассматривать как источник истинного познания равенства, удвоения или каких-либо отношений.
…Значит, мы будем изучать астрономию так же, как геометрию, с применением общих положений, а то, что на небе, оставим в стороне, раз мы действительно хотим освоить астрономию.
([2], с. 340-341.)


Такая концепция астрономии совершенно неприемлема для современного ума, и ученые без колебаний обвинили Платона в том, что, принизив значение чувственного опыта, он причинил ущерб развитию естествознания. Однако не следует упускать из виду, что подход Платона к астрономии во многом аналогичен методу, которому успешно следует геометр, занимающийся изучением не столько реальных объектов треугольной формы, сколько мысленных идеализаций треугольников. Во времена Платона наблюдательная астрономия практически достигла предела возможного, и Платон вправе был считать, что дальнейший прогресс астрономии требует глубокого осмысления собранных данных и их теоретического обобщения.

К сожалению, платоновская концепция абстрактных идеалов, на века замедлила развитие экспериментального естествознания. Ведь из нее следовало, что истинное знание приобретается только путем философского созерцания абстрактных идей, а не наблюдений случайных и несовершенных явлений реального мира.

Но были (и есть) философы, допускавшие существование реального внешнего мира, убежденные, что наши ощущения дают достаточно точное представление о нем. Аристотель в противоположность Платону не только утверждал существование мира, внешнего по отношению к человеку, но и считал, что наши представления о нем получаются путем абстрагирования из него идей, общих различным классам материальных объектов, которые мы воспринимаем как треугольники, сферы, листву и горы. Аристотель подверг критике потусторонний мир Платона и сведение естествознания к математике. Физик в буквальном смысле слова, Аристотель видел в материальных объектах первичную субстанцию и источник реальности. Физика и естествознание в целом должны заниматься изучением окружающего мира, извлекая в этом процессе истины о нем. Истинное знание по Аристотелю рождается из чувственного опыта с помощью интуиции и абстракции. Абстрактные идеи не существуют независимо от человеческого разума.

В поисках истины Аристотель прибег к так называемым универсалиям — общим качествам, абстрагированным от реальных вещей. По словам Аристотеля, «в науке о природе надо попытаться прежде всего определить то, что относится к началам. Естественный путь к этому ведет от более понятного и явного для нас к более явному и понятному по природе» ([3], с. 61). Взяв обычные чувственно воспринимаемые свойства вещей, Аристотель как бы придал им самостоятельный статус, возвысив до идеальных понятий. В частности, согласно его взглядам, за Землей, пребывавшей в центре мира и содержавшей всю воду, шла область, заполненная воздухом; еще выше, до самой Луны, простиралась область, заполненная субстанцией, которая называлась огнем, хотя в действительности представляла смесь огня и воздуха. Все эти субстанции, по Аристотелю, обязаны своим происхождением четырем началам; теплому, холодному, сухому и влажному (см. гл. V и X). Начала комбинируются в пары шестью возможными способами, но две из шести комбинаций (теплого и холодного, сухого и влажного) несовместны по своей природе, а остальные четыре порождают четыре элемента. Земля — порождение холодного и сухого, вода — холодного и влажного, воздух — теплого и влажного, огонь — теплого и сухого. Элементы не вечны; материя же непрестанно переходит из одной формы в другую. В подлунном мире, простирающемся от Земли до Луны, постоянно происходит изменение, разложение, умирание и распад, о чем убедительно свидетельствуют метеорологические и геологические явления.

Хотя влияние древнегреческих мыслителей на последующее развитие естествознания неоспоримо, некоторые все же склонны недооценивать их взгляды. Действительно, несмотря на то что античная культура всячески подчеркивала значение математики, мир древнегреческих философов с полным основанием можно было бы назвать донаучным. Они не занимались сколько-нибудь серьезно экспериментированием и в целом оставались в стороне от того, что принято ныне понимать под миром науки.

В Средние века проблема внешнего мира отступила на задний план; помыслами всех философов безраздельно завладела теология. Лишь в эпоху Возрождения философы с возросшим интересом вновь обратились к реальному миру. В Западной Европе того времени зарождается современная философия и вместе с ней — интерес к естествознанию.

Основателем современной философии по праву считается Рене Декарт (1596-1650). Его «Рассуждение о методе, чтобы хорошо направлять свой разум и отыскивать истину в науках» (1637) с тремя приложениями («Диоптрика», «Метеоры» и «Геометрия») принадлежит к числу классических произведений. Хотя Декарт полагал, что его философские и естественнонаучные теории подрывают учение Аристотеля и схоластику, в глубине души он оставался схоластом и верным последователем аристотелевой традиции. Идя по стопам Аристотеля, Декарт черпал различные утверждения о природе сущего и реальности из собственного разума. Возможно, что именно поэтому его произведения оказывали на естествоиспытателей XVII в. несравненно большее влияние, чем исследования тех ученых, кто начал извлекать истину путем наблюдения и экспериментирования, т.е. обращаться к источникам, столь разительно отличавшимся от традиционных.

Признавая, что он сам может заблуждаться ничуть не менее других, Декарт все же сумел найти прочную основу для возведения здания истины. Он обнаружил один-единственный факт, не вызывавший у него сомнения, — положение Cogito, ergo sum («Мыслю, следовательно, существую»). Сознавая собственную конечность и несовершенство, Декарт заключил, что из самого ощущения ограниченности его возможностей с необходимостью следует бытие существа бесконечного и совершенного, с которым он, Декарт, мог бы себя соизмерять. Это существо, Бог, должно существовать, ибо без столь важного атрибута — бытия — оно не было бы совершенным. С точки зрения Декарта, вывод о существовании Бога более важен для естествознания, чем для теологии, ибо открывает возможность решения главной проблемы — существования объективного мира.

Поскольку все наше знание о мире, внешнем по отношению к нашему разуму, мы черпаем из чувственного опыта, возникает вопрос: не существует ли чего-нибудь помимо ощущений и не является ли объективная реальность иллюзией? На этот вопрос Декарт отвечает так: Бог, как существо совершенное, не способен на обман и не стал бы вселять в нас уверенность в существовании мира, если бы этот мир не был реальным.

Постичь объективную реальность мы можем прежде всего через такой ее физический атрибут, как протяженность. Он присущ самому понятию материи и невыводим из наших чувственных восприятий. Следовательно, никакое знание материального мира нельзя получить (по крайней мере непосредственно) на основании чувств. Декарт предложил также классификацию наблюдений материальных объектов, разделив качества последних на первичные и вторичные. Например, он считал, что такое качество, как цвет, вторично, ибо воспринимается одним из наших органов чувств, тогда как протяженность и движение — качества первичные.

Для Декарта весь физический мир представлял собой не что иное, как огромную машину, функционирующую по законам, открыть которые человеческий разум может, в частности, путем математических рассуждений. Экспериментирование Декарт как философ отвергал, хотя, выступая как естествоиспытатель, сам ставил опыты.

Непосредственным результатом прогресса знания, достигнутого в математике и естествознании, явилось положение, высказанное философом Томасом Гоббсом (1588-1679) в сочинении «Левиафан, или материя, форма и власть государства церковного и гражданского» (1651); суть его заключалась в том, что вне нас существует только материя в движении. Внешние тела оказывают давление на наши органы чувств и посредством чисто механических процессов вызывают ощущения в нашем мозгу. Все знание проистекает из этих ощущений, рождающих образы в нашем мозгу. Цепочка таких образов вызывает воспоминание о других образах, возникших ранее: например, образ яблока вызывает из памяти образ дерева. Мышление — это построение цепочек образов. В частности, телам и свойствам тел, запечатленным в образах, присваиваются имена, и мышление состоит в установлении связей между именами путем утверждений и в поиске соотношений, которые обязательно существуют между этими утверждениями.

В своем сочинении «Человеческая природа» (1650) Гоббс утверждает, что идеи являются образами или воспоминаниями о воспринятом ранее посредством чувств. Не существует врожденных идей или идеалов, равно как и универсалий или абстрактных идей. Треугольник есть не что иное, как идея (образ) всех ранее воспринятых треугольников. Всякая субстанция, порождающая идеи, материальна. Разум — также субстанция. Язык (например, язык естествознания и математики) состоит из одних лишь символов или имен воспринимаемых ощущений. Всякое знание — не более чем воспоминание, и разум оперирует словами, которые не более чем имена вещей. Истинность и ложность — атрибуты имен, но не вещей. То, что люди — живые существа, истинно, так как то, что называется человеком, называется также живым существом.

Знание возникает, когда мозг, организуя и упорядочивая утверждения о физических объектах, выявляет закономерности. Именно такие закономерности порождает занятие математикой. Следовательно, математическая деятельность мозга приводит к истинному знанию реального мира, и математическое знание есть истина. По существу реальность доступна нам только в форме математики.

Гоббс с таким упорством отстаивал исключительное право математики на истину, что это вызвало возражение даже самих математиков. В письме к одному из самых выдающихся физиков своего времени Христиану Гюйгенсу математик Джон Валлис сообщал:


Наш Левиафан подвергает яростным нападкам и ниспровергает наши (да и не только наши) университеты и особенно священников, клир и всю религию, утверждая, будто христианский мир не достиг глубокого знания, которое не было бы ущербным и достойным осмеяния с точки зрения либо философии, либо религии, и люди не смогут якобы до конца постичь религию, если они не разбираются в философии, и философию, если не разбираются в математике.


То, что Гоббс всячески подчеркивал чисто физическое происхождение ощущений и ограниченные возможности мозга в процессе рассуждения, шокировало многих философов, привыкших видеть в головном мозге нечто большее, нежели массу механически действующей материи. Свое сочинение «Опыт о человеческом разуме» (1690) Джон Локк (1632-1704) начал с положения, близкого по духу Гоббсу, но явно противоречащего Декарту; он утверждал, что у человека нет врожденных идей — люди рождаются с разумом пустым, как чистые грифельные доски. Опыт, накапливаемый с помощью органов чувств, «пишет» на этих досках, порождая простые идеи. Некоторые простые идеи являются точным отражением свойств, присущих телам. Примерами таких свойств (Локк назвал их первичными) могут служить твердость, протяженность, форма (фигура), движение (или покой) и число. Эти свойства существуют независимо от того, воспринимает ли их кто-нибудь другой или не воспринимает. Другие идеи, порождаемые ощущениями, отражают вторичные свойства и представляют собой результат воздействия реальных свойств тел на разум, но не соответствуют последним. К вторичным свойствам относятся цвет, вкус, запах и звук.

Цель, которую поставил перед собой Локк в своем «Опыте», состояла в установлении границы между познаваемым и непознаваемым, «горизонта…, отделяющего освещенные стороны вещей от темных». При этом для Локка были равным образом неприемлемы взгляды и скептиков, «подвергавших сомнению все и ниспровергавших всякое знание потому, что некоторые вещи непознаваемы», и тех чрезмерно самоуверенных резонеров, занимавших противоположную позицию и полагавших, будто весь безбрежный океан бытия является «естественным и неоспоримым владением нашего разума, где все подвластно его решениям и ничто не может избегнуть его проницательности». В более конструктивном плане Локк намеревался установить основы знания и суждения, а также указать пути достижения истины или приближения к ней во всех вещах, доступных пониманию человеческого разума.

Поясняя замысел, или план, своего сочинения, Локк заметил, что видел цель своего «Опыта» в исследовании «происхождения, достоверности и объема человеческого познания вместе с основаниями и степенями веры, мнений и убежденности» ([4], с. 71). Следуя «историческому, ясному методу», Локк дал объяснение происхождения идей, затем показал, что познание — это понимание посредством этих идей, и, наконец, подверг анализу природу и основания веры и мнений.

Хотя разум не может создать простые идеи, он обладает способностью размышлять над простыми идеями, сопоставлять и объединять их, тем самым конструируя из простых идей сложные. В этом Локк расходится с Гоббсом. Кроме того, Локк полагал, что разум познает не саму реальность, а лишь идеи реальности и оперирует с ними. Для познания существенно отношение идей, например их непротиворечивость или противоречивость. Истина состоит в знании, соответствующем реальности вещей.

Основные математические идеи — плоды разума, но в конечном счете они восходят к опыту; тем не менее некоторые идеи невозможно проследить до реальных сущностей. Такие более абстрактные математические идеи разум конструирует из основных идей, повторяя, комбинируя и располагая последние в различном порядке. Эти абстрактные идеи порождаются восприятием, мышлением, сомнением, верой, рассуждением, желанием и знанием. Именно так мы приходим, например, к идее идеальной окружности. Следовательно, существует внутренний опыт, порождающий абстрактные идеи. Математическое познание универсально, абсолютно, достоверно и значимо. Это познание реально, хотя и состоит из идей.

Демонстративное (выводное, доказательное) познание соединяет эти идеи и таким образом устанавливает истины. Локк отдает предпочтение математическому познанию, ибо, по его мнению, идеи, которыми оно оперирует, наиболее ясны и, следовательно, надежны. Кроме того, математика устанавливает отношения между идеями, вскрывая необходимые связи между ними, а такие связи разум постигает лучше всего. Локк не только отдавал предпочтение математическому познанию реального мира, но и отрицал прямое физическое познание, ссылаясь на то, что многие факты относительно структуры материи, например физических сил, посредством которых объекты притягиваются друг к другу или отталкиваются, просто не ясны. Кроме того, считал он, так как мы познаем не реальную субстанцию внешнего мира, а лишь идеи, порождаемые ощущениями, физическое познание вряд ли можно считать удовлетворительным. Тем не менее Локк был убежден, что реальный мир, обладающий свойствами, описываемыми математикой, существует, как существует Бог и мы сами.

В целом теорию познания Локка, хотя она не вполне последовательна, можно назвать интуитивной. В его системе истина присуща только предложениям (утверждениям) и прогресс в познании и правильном суждении достигается путем сравнения — прямого либо через промежуточные идеи — предложений с тем, чтобы установить, согласуются они между собой или нет. Познание достигается, если это согласие или несогласие воспринимаемо непосредственно и вполне определенно.

Даже при демонстративном познании, когда согласие или несогласие воспринимается не непосредственно, а устанавливается путем формирования других идей, каждый шаг в рассуждении должен быть интуитивно ясным и достоверным. При другом виде познания — чувственном — мы интуитивно постигаем существование отдельных внешних вещей, как они представляются нашим чувствам.

Первое из средств познания — прямая интуиция — дает нам достоверное знание нашего собственного существования, ибо «в каждом акте чувственного восприятия, рассуждения или мышления мы мыслим свое бытие, достигая таким образом почти высочайшей степени достоверности». Соотношения в геометрии и алгебре, принципы абстрактной морали и существования Бога доказываются посредством рационального логического вывода, в то время как существование внешних вещей, как они представляются нашим чувствам, познаваемо чувственным путем — через ощущения. Они являют собой основополагающие истины, имеющие наиболее важное значение для нашего существования и благоденствия, но они, как нетрудно понять, не позволяют нам проникнуть сколько-нибудь далеко в безбрежный океан жизни.

Локк, подобно Декарту, лишал природу всех вторичных свойств. Природа по Локку — зрелище весьма непривлекательное: беззвучная, бесчувственная, бесцветная, без запаха и вкуса, она сводилась к движению материи, лишенной разума. Влияние Локка на общественное мышление было огромным. В XVIII в. философия Локка безраздельно господствовала над умами людей подобно тому, как в XVII в. все находились во власти картезианской философии (философии Декарта).

В своих теориях познания Гоббс и в меньшей степени Локк настоятельно подчеркивали существование материального мира, внешнего по отношению к человеку. Хотя все знание проистекает из внешнего мира, считали они, наиболее достоверные истины о нем, полученные человеческим разумом (или мозгом), дают законы математики. Епископ Джордж Беркли (1685-1753), снискавший известность не только как церковный деятель, но и как философ, усмотрел в признании первостепенного значения материи и математики угрозу религии и принижение таких понятий, как Бог и душа. Остроумно и язвительно нападая на Гоббса и Локка, он предложил собственную теорию познания.

С особой настойчивостью Беркли отрицал существование внешнего мира, не зависимого от нашего восприятия и мышления. По существу его аргументация сводилась к утверждению, что все ощущения субъективны и, следовательно, зависят от наблюдателя и его точки зрения. Кажущуюся устойчивость многих чувственных восприятий (например, посмотрев на дерево дважды через небольшой промежуток времени, мы не заметим в нем никаких изменений) Беркли объяснял тем, что наши восприятия хранятся в разуме божьем.

Решительное наступление на позиции идейных противников Беркли повел в своем главном философском труде «Трактат о принципах человеческого знания» (1708), где он исследовал основные причины заблуждений и затруднений в науках, а также основания скептицизма, атеизма и безверия. И Гоббс, и Локк утверждали, что наше познание состоит исключительно из идей, порождаемых воздействием на наш разум внешних материальных объектов. Беркли признавал чувственные восприятия, или ощущения, и выводимые из них идеи, но оспаривал утверждение о том, что идеи порождаются материальными объектами, внешними по отношению к воспринимающему разуму. Поскольку мы воспринимаем только ощущения и идеи, нет оснований считать, будто существует нечто внешнее по отношению к нам. В ответ на мысль Локка о том, что наши идеи первичных качеств материальных объектов есть точные копии этих свойств, Беркли ядовито заявлял, что идея не может походить ни на что, кроме идеи:


Прибегая к самому крайнему усилию для представления себе существования внешних тел, мы достигаем лишь того, что созерцаем наши собственные идеи. Но, не обращая внимания на самого себя, дух впадает в заблуждение, думая, что он может представлять и действительно представляет себе тела, существующие без мысли вне духа, хотя в то же время они воспринимаются им или существуют в нем.
([5], с. 181.)


Все наше знание — в разуме.

Свою позицию Беркли подкрепил аргументом, который подсказал ему, сам того не желая, Локк, различавший идеи первичных и вторичных свойств. Идеи первичных свойств, заявлял Беркли, соответствуют реальным свойствам, идеи вторичных свойств существуют только в духе. «Не в моей власти образовать идею протяженного и движущегося тела без снабжения его некоторым цветом или другим ощущаемым качеством, о котором признаю, что оно существует только в духе» ([5], с. 181), — утверждал Беркли. Но коль скоро вторичные качества существуют только в духе, первичные также отражены только в нем.

Кратко суть построений Беркли сводится к следующему. Поскольку наше познание ограничено ощущениями и идеями, порождаемыми ощущениями, но не распространяется на сами внешние объекты, необходимость в предположении о существовании внешнего мира отпадает. Внешний мир существует ничуть не в большей степени, чем искры, которые сыплются у человека из глаз, если его сильно ударить по голове. Вывод о существовании материального внешнего мира лишен смысла и недоступен познанию. Если бы внешние тела существовали, то мы никаким способом не могли бы узнать об этом, а если бы они не существовали, то по тем же причинам мы должны были бы думать, будто они существуют. Дух и ощущения — вот единственные реальности. Так Беркли опровергал идею о существовании материи.

Но ему было необходимо разделаться и с математикой. Как могло случиться, что дух обрел способность выводить законы, позволяющие не только описывать, но и предсказывать происходящее в гипотетическом внешнем мире? Что мог Беркли противопоставить глубоко укоренившемуся в XVII в. убеждению в истинности знания о внешнем мире, которое дает математика?

Беркли жаждал во что бы то ни стало подорвать веру в непогрешимость математики, и он был достаточно искушен, чтобы нанести удар по самому уязвимому месту. Основным понятием дифференциального исчисления было понятие мгновенной скорости приращения функции. Но как надлежит понимать мгновенную скорость приращения — здесь мнения расходились; и Ньютон, и Лейбниц излагали это понятие недостаточно вразумительно. Именно на него и обрушился Беркли (не без основания и с полной убежденностью в своей правоте). В своем сочинении «Аналитик, или рассуждение, адресованное одному неверующему математику [Эдмонду Галлею], где исследуется, являются ли предмет, принципы и заключения современного анализа более отчетливо познаваемыми и с очевидностью выводимыми, чем религиозные таинства и положения веры» (1734) Беркли негодующе вопрошал:


Что такое эти флюксии [термин, которым Ньютон называл мгновенные скорости приращений]? Скорости исчезающе малых приращений. А что такое эти исчезающе малые приращения? Они не есть ни конечные величины, ни бесконечно малые величины, но они и не нули. Разве мы не имеем права называть их призраками исчезнувших величин?
([5], с. 425-426.)



…Но я полагал бы, что тому, кто в состоянии переварить вторую или третью флюксию, второй или третий дифференциал, не следовало бы привередничать в отношении какого-либо положения в вопросах религиозных.
([5], с. 401.)


То, что дифференциальное исчисление, несмотря на трудности, связанные с введением новых понятий, уже доказало свою полезность, Беркли объяснял всего лишь тем, что допущенные ошибки удачно компенсировали друг друга. Критикуя математический анализ, обоснованием которого занимались его современники, Беркли в действительности не отвергал все истины о реальном мире, открытые математикой. Он лишь хотел заставить своих оппонентов призадуматься, подвергнув критике слабое место в их обороне. Суть своей философии Беркли выразил словами:


Весь хор небесный и все, что ни есть на земле, словом, все тела, которые образуют величественную систему мира, не обладают никакой субстанцией без нашего ума… Покуда они не воспринимаются мной или не существуют в моем уме или в чьем-нибудь еще сотворенном духе, они вообще лишены существования или присутствуют в разуме некоего Вечного Духа.


Но даже сам Беркли не смог избежать — эпизодических вылазок в тот самый внешний мир, существование которого он отрицал. В своей последней работе под названием «Сейрис, или цепь философских размышлений, касающихся достоинств дегтярной настойки и разных других предметов, связанных друг с другом и возникающих один из другого» Беркли настоятельно рекомендовал дегтярную настойку как средство от оспы, чахотки, подагры, плеврита, астмы, несварения желудка и многих других болезней. Впрочем, такие временные отходы от занимаемой позиции вряд ли следует ставить в вину Беркли. Всякий, кто заглянет в его сочинение «Три разговора между Гиласом и Филонусом», убедится, сколь искусно и с каким блеском он отстаивает свою философию.

Крайние взгляды Беркли на материю и разум породили известную шутку: «Что такое материя? — Не нашего ума дело. Что такое ум? — Не наша эта материя». Лишая материализм материи, Беркли полагал, что тем самым он отвергает и внешний мир.

Казалось, вряд ли можно высказываться более радикально по вопросу об отношении человека к внешнему миру, чем это делал Беркли. Но по мнению шотландского философа-скептика Дэвида Юма (1711-1776), Беркли ушел не так уж далеко, если Беркли признавал мыслящий разум, в котором существовали ощущения и идеи, то Юм отрицал и разум. В своем «Трактате о человеческой природе, или попытке применить основанный на опыте метод рассуждения к моральным предметам» (1739-1740) Юм утверждал, что мы не знаем ни разума, ни материи. И то и другое — лишь фикции, не воспринимаемые нами. Воспринимаем же мы впечатления (ощущения) и идеи — образы, воспоминания, мысли, — но все эти три разновидности воспринимаемого не более чем слабые отголоски впечатлений. Разумеется, впечатления и идеи подразделяются на простые и сложные, но сложные впечатления есть не что иное, как комбинации простых впечатлений. Наш разум, по утверждению Юма, тождествен набору наших впечатлений и идей и представляет собой лишь удобный термин для обозначения такого набора.

По вопросу о материи Юм разделял мнение Беркли. Кто гарантирует нам бытие перманентно существующего мира телесных объектов? Все, что мы знаем, — это наши чувственные впечатления о таком мире. Соединяя идеи по сходству и располагая их в определенной последовательности, память упорядочивает мир идей так же, как сила тяжести устанавливает порядок во внешнем мире. Пространство и время — всего лишь способ и порядок, в котором являются нам идеи. Ни пространство, ни время не есть объективные реальности. Сила и прочность наших идей вводят нас в заблуждение, заставляя верить в такие реальности.

Вывод о существовании внешнего мира с неизменными свойствами ничем не обоснован. Нет оснований полагать, будто существует что-нибудь кроме впечатлений и идей, ничему не соответствующих и ничего не представляющих. Следовательно, не может быть и научных законов, относящихся к перманентному объективному внешнему миру; то, что мы называем такими законами, — не более чем удобное обозначение для некоторой суммы впечатлений. У нас нет способа узнать, повторятся ли те последовательности впечатлений, которые мы наблюдали. Мы сами представляем собой всего лишь разрозненные наборы восприятий, т.е. впечатления и идей. Мы существуем только в этом смысле. При любой попытке с нашей стороны воспринять самих себя мы доходим лишь до восприятия. Для любого человека все остальные люди и предполагаемый внешний мир — всего лишь восприятия, и нет гарантии, что они действительно существуют.

Лишь одно препятствие стояло на пути всепроникающего скептицизма Юма — существование общепризнанных истин самой математики. Просто отмахнуться от них Юм не мог, и ему не оставалось ничего другого, как попытаться принизить ценность математических истин. По мнению Юма, теоремы чистой математики — это излишние утверждения, ненужные повторения одного и того же различными способами. То, что дважды два — четыре, не ново. В действительности дважды два — всего лишь иной способ записать или назвать устно число «четыре». Следовательно, и это, и другие утверждения арифметики — не более чем тавтология. Что же касается теорем геометрии, то они представляют собой повторения в более сложной форме аксиом, в которых в свою очередь не больше смысла, чем в утверждении о том, что дважды два — четыре.

В своем «Трактате о человеческой природе» Юм скептически отозвался о силе разума как орудия для рационального объяснения:


Ни один объект на обнаруживает себя качествами, доступными нашим ощущениям, или причинами, породившими его, или действиями, проистекающими от него; без помощи опыта наш разум не в состоянии сделать какое-либо заключение относительно реального бытия и существования.


Опыт может подсказать причину и действие, следствие, но основанное на опыте убеждение лишено рациональной основы. Убеждение разумно только в том случае, если его отрицание логически противоречиво, но ни одно убеждение, к которому нас приводит опыт, не отвечает этому требованию. Подлинной науки о перманентном и объективном мире не существует; наука чисто эмпирическая.

Общую проблему познания физического мира Юм решает, отрицая самую возможность получения истин о нем. Ни теоремы математики, ни существование Бога, ни существование внешнего мира, причинности, природы, ни чудеса истинами не являются. Так Юм с помощью разума разрушил то, что было создано разумом, подчеркивая в то же время ограниченность возможностей последнего.

Окончательный вывод всей философии Юма — отрицание им наивысшей способности человека, способности познания мира, — большинство мыслителей XVIII в. восприняло весьма неодобрительно. Слишком велики были достижения математики и другие проявления человеческого разума, чтобы от них так легко отказаться. Иммануил Кант (1724-1804) без обиняков выразил свое непринятие необоснованного расширительного толкования Юмом теории познания Локка: разум должен снова занять подобающее ему место. Кант не сомневался, что человек располагает идеями и истинами, представляющими нечто большее, нежели простое соединение чувственного опыта.

Тем не менее при тщательном изучении итог размышлений Канта оказался не столь обнадеживающим. В своем сочинении «Пролегомены ко всякой будущей метафизике, могущей появиться как наука» (1783) Кант писал:


Мы можем с достоверностью сказать, что некоторые чистые априорные синтетические познания имеются и нам даны, а именно чистая математика и чистое естествознание, потому что оба содержат положения, частью аподиктически достоверные на основе одного только разума, частью же на основе общего согласия из опыта и тем не менее повсеместно признанные независимыми от опыта.
([6], с. 89.)


В «Критике чистого разума» (1781) Кант приходит к более утешительному выводу, признавая истинами все аксиомы и теоремы математики. Почему, спрашивает себя Кант, мы столь охотно приемлем эти истины? Сам по себе опыт не может служить оправданием нашей готовности к признанию математических истин. Ответить на поставленный вопрос, по мнению Канта, можно лишь после того, как будет найден ответ — на более общий вопрос: как возможна сама наука математика?

Кант избрал совершенно новый подход к проблеме получения человеком истинного знания. Первый его шаг состоял в том, чтобы провести различие между двоякого рода суждениями, дающими знание. Суждения первого рода Кант называл аналитическими; они не дают нового знания. Примером может служить суждение «Все тела протяженны». Оно лишь констатирует в явном виде свойство, присущее всем телам в силу того, что это — тела, и не сообщает нам ничего нового. Суждения второго рода, выводимые каким-то образом нашим разумом независимо от опыта, Кант называл априорными.

По мысли Канта, опыт не может быть единственным источником истины, ибо опыт — лишь пестрая смесь ощущений, в которую не привнесены ни рациональное начало, ни организация. Следовательно, сами по себе наблюдения не дают истин. Истины, если они существуют, должны быть априорными суждениями. Кроме того, чтобы быть подлинным знанием, истины должны быть синтетическими суждениями — давать новое знание.

За убедительным примером не нужно ходить далеко: он в совокупности математического знания. Почти все аксиомы и теоремы математики Кант относит к априорным синтетическим суждениям. Утверждение о том, что прямая — это кратчайшее расстояние между двумя точками, заведомо синтетическое, ибо сочетает в себе две идеи — прямолинейности и кратчайшего расстояния, ни одна из которых не выводима из другой. Вместе с тем это суждение априорно, так как никакой опыт с прямыми и никакие измерения не могли бы убедить нас в том, что перед нами неизменная универсальная истина, какой считал это утверждение Кант. Таким образом, Кант не сомневался, что люди обладают априорными синтетическими суждениями, т.е. подлинными истинами.

Кант попытался пойти дальше. Почему, спросил он себя, мы с такой готовностью принимаем за истину утверждение о том, что прямая — кратчайшее расстояние между двумя точками? Откуда нашему разуму известны такие истины? Ответить на этот вопрос мы могли бы, если бы знали ответ на вопрос, как возможна сама математика. Кант полагал, что формы пространства и времени присущи нашему разуму независимо от опыта. Он называл эти формы созерцаниями, считая их чисто априорными средствами познания, не основанными ни на опыте, ни на логическом рассуждении. Так как созерцание пространства априори присуще разуму, некоторые аксиомы о пространстве постигаются разумом непосредственно, и геометрии остается лишь извлекать логические следствия из этих аксиом. Законы пространства и времени, законы разума предшествуют познанию реальных явлений, делая его возможным. По словам Канта, «всеобщие и необходимые законы опыта принадлежат не самой природе, а только разуму, который вкладывает их в природу».

Мы воспринимаем, организуем и постигаем опыт в соответствии с теми формами мысли, которые присущи нашему разуму. Опыт попадает в них, словно тесто в форму. Рассудок отпечатывает их на воспринятых чувственных впечатлениях, вынуждая ощущения подстраиваться под априорные формы мысли. Поскольку созерцание пространства присуще разуму, он автоматически постигает некоторые формы пространства. Такие постулаты геометрии, как «прямая — кратчайшее расстояние между двумя точками» или «через любые три точки, не лежащие на одной прямой, можно провести плоскость и притом только одну», а также аксиома Евклида о параллельности, которые Кант называл априорными синтетическими суждениями, являются частью «оснащения» нашего разума. Геометрия как наука занимается изучением логических следствий из этих постулатов. Тот факт, что рассудок воспринимает опыт в понятиях «пространственной структуры», предопределяет согласие опыта с исходными аксиомами, постулатами и теоремами геометрии.

Поскольку Кант строил пространство из клеток человеческого мозга, он не видел оснований для того, чтобы не сделать это пространство евклидовым. Неспособность представить себе другую геометрию, убедила его в том, что таковой просто не существует. Утверждая истинность евклидовой геометрии, он в то же время доказывал существование априорных синтетических суждений. По Канту, законы евклидовой геометрии не присущи внешнему миру, а сам мир не задуман Богом так, чтобы в нем выполнялась евклидова геометрия. Законы геометрии — это механизм, позволявший человеку привносить в ощущения организацию и рациональное начало. Что же касается Бога, то, по утверждению Канта, природа божественного лежит за пределами рационального знания, но мы должны верить в Бога. Но при всей дерзости Канта в философии его суждения о геометрии были весьма опрометчивы: прожив почти безвыездно в своем родном городе Кенигсберге [ныне Калининград] в Восточной Пруссии, Кант тем не менее вздумал определить геометрию мира.

Каких взглядов придерживался Кант относительно математических законов естествознания? Поскольку весь опыт воспринимается через мыслительные схемы пространства и времени, математика должна быть применима ко всему опыту. В «Метафизических начальных основаниях естествознания» (1787) Кант трактует законы Ньютона и следствия из них как самоочевидные. Он утверждает, будто ему удалось доказать, что первый закон Ньютона может быть выведен из чистого разума и что этот закон — единственное допущение, при котором природа может быть познана человеческим разумом.

В более общем плане Кант полагал, что мир науки есть мир чувственных впечатлений, упорядоченных и управляемых рассудком в соответствии с такими врожденными категориями, как пространство, время, причина, действие и субстанция. Наш разум как бы обставлен мебелью, в которой с удобством могут расположиться гости. Чувственные впечатления поступают из внешнего мира, но этот мир, к сожалению, непознаваем. Реальность может быть познана только в субъективных категориях познающего разума. Следовательно, невозможен иной способ организации опыта, чем геометрия Евклида и механика Ньютона.

Согласно Канту, по мере расширения опыта и возникновения новых наук, разум не формулирует новые принципы путем обобщения нового опыта: для интерпретации последнего лишь включаются дополнительные, ранее не использовавшиеся области рассудка. Способность разума к пониманию возрастает с накоплением опыта. По этой причине одни истины (например, законы механики) постигаются позже других, известных на протяжении столетий.

Кант утверждал также, что мы не можем надеяться приобрести достоверное знание на основании одного лишь чувственного знакомства с объектами. Мы никогда не познаем реальные вещи в себе. Но если мы способны познать что-нибудь достоверно, то это должно быть результатом процесса, происходящего в нашем рассудке при изучении данных, полученных из внешнего мира.

Философия Канта, которую мы обрисовали лишь в самых общих чертах, — это прославление разума, однако Кант приписал ему роль исследователя не природы, а сокровенных тайн человеческой души. Опыт Кант признавал лишь как необходимый элемент познания, так как ощущения, вызываемые внешним миром, поставляют «сырой материал», организуемый рассудком. Математика обрела в философии Канта свое место открывателя непреложных законов разума.

Из приведенного нами беглого очерка теории познания Канта видно, что существование математических истин он сделал краеугольным камнем своей философии. В частности, Кант опирался на истины евклидовой геометрии. Увы! Созданная в XIX в. неевклидова геометрия опровергла все аргументы Канта,

Несмотря на превосходную философию Канта и признание его работ, наиболее знаменитый из английских философов XIX в. Джон Стюарт Милль (1806-1873) вернулся к взглядам Юма, несколько видоизменив их. Милль был позитивистом: он утверждал, что, хотя знание в основном проистекает из опыта, оно включает также соотношения, формулируемые познающим разумом относительно чувственных данных. Доказать существование внешнего мира невозможно, но в равной мере невозможно доказать, что внешний мир не существует.

Под внешним объектом мы понимаем нечто существующее независимо от того, мыслим мы его или нет, остающееся неизменным, даже если вызываемые им ощущения изменяются, и общее для многих наблюдателей, хотя испытываемые ими ощущения могут отличаться. По Миллю, представление о внешнем мире в любой момент времени лишь в малой степени состоит из реальных ощущений, а в основном — из возможных ощущений (не тех, которые некто испытывает, а тех, которые он испытал бы, двигаясь или поворачивая голову). Материя есть то, — что может перманентно порождать ощущения. Память, согласно Миллю, также играет некую роль в познании такого типа.

Внешний мир мы познаем только через ощущения. Такое знание несовершенно, и нам неведомы его точные границы и протяженность. Простые идеи, рожденные ощущениями, наш разум комбинирует в сложные; такое знание номинально, но не существенно. Знание, добытое методом индукции, не достоверно, а лишь вероятно, но это — все, чем мы располагаем в науке и можем руководствоваться в жизни.

Как считал Милль, наши умозаключения в математике, например в евклидовой геометрии, необходимы только в том смысле, что они следуют из исходных допущений. Однако сами исходные допущения (аксиомы) основаны на наблюдениях и представляют собой обобщения опыта. Арифметика и алгебра также основаны на опыте. Выражения 2 + 2 = 3 + 1 = 4 являются психологическими обобщениями. Алгебра же есть не что иное, как более абстрактное продолжение таких обобщений.

Методу индукции Милль придавал первостепенное значение, считая его источником возможных обобщений, подобных законам природы. Причина — не более как антецедент последующего. Все происходящее имеет причину, выводимую из опыта. Именно в этом и состоит по Миллю точный смысл принципа однородности природы.

Помимо экспериментального знания нет ничего, что было бы возможно или необходимо. Опыт и психология могут полностью объяснить наше знание, и на них зиждется наша уверенность в существовании внешнего мира. Милль был эмпириком, хотя его взгляды отличаются от скептицизма Юма. Идеи Милля близки к эмпиризму и логическому позитивизму XX в. и, можно сказать, способствовали возникновению данных направлений в философии.

Какие выводы относительно существования внешнего мира и надежности нашего знания можно сделать из этого ретроспективного обзора взглядов выдающихся философов прошлого?{1} Мы разделяем точку зрения Эйнштейна:


Вера в существование внешнего мира, независимого от воспринимающего субъекта, лежит в основе всего естествознания. Но так как чувственное восприятие дает информацию об этом внешнем мире, или о «физической реальности», опосредствовано, мы можем охватить последнюю только путем рассуждений.
([7], с. 136.)


Опыт не может служить доказательством существования реальности — он носит личный характер.

Хотя мы встали на позицию эмпириков и вознамерились выяснить, что же можно, узнать о внешнем мире, нам лучше всего начать с ответа на вопрос, насколько надежны наши чувственные восприятия. Этим мы займемся в гл. I. Прежде всего нас будет интересовать, в какой мере математике удается вносить поправки в то, что можно было бы назвать иллюзиями, и в особенности открывать полностью невоспринимаемые нами физические явления.

I

Обман чувств и интуиция

Ощущения — это обман наших чувств. Декарт
Несмотря на то что Беркли отрицал существование мира вне нас, а Юм, Гераклит, Платон и Милль признавали это только с различными оговорками и ограничениями, физики и математики убеждены в том, что внешний мир существует. Они утверждают, что даже если бы все люди внезапно исчезли, то внешний, или физический, мир продолжал бы существовать. Если в чаще леса на землю падает дерево, то звук раздается независимо от того, слышит его кто-нибудь или не слышит. Мы наделены пятью чувствами: зрением, слухом, осязанием, вкусом и обонянием, и каждое из них непрерывно воспринимает «послания» из этого мира.

Из практических соображений, а именно для того, чтобы выжить или иметь возможность улучшить условия бытия в реальном мире, мы определенно хотим знать об этом мире как можно больше. Нам необходимо отличать сушу от моря. Нам нужно выращивать съедобные растения и разводить животных, строить укрытия и защищаться от диких зверей. Почему бы нам для достижения этих целей не полагаться на свои органы чувств? Ведь именно так поступают примитивные цивилизации. Но подобно тому, как мир чист для того, кто чист сердцем, мир прост для того, кто простодушен.

Пытаясь улучшить материальные условия своего существования, мы вынуждены расширять наше знание внешнего мира. Это побуждает нас напрягать до предела и наши органы чувств. К сожалению, они не только ограничены по своим возможностям, но и способны вводить нас в заблуждение. Если бы мы полагались только на наши органы чувств, то последствия этого могли бы быть самыми печальными. Нетрудно назвать случаи, когда наши чувства обманывают нас.

Самым ценным из пяти чувств, по-видимому, является зрение, и следует прежде всего проверить, в какой мере мы можем доверять ему. Начнем с примеров. За долгие годы ученые придумали и построили много обманчивых картинок, наглядно демонстрирующих, сколь ограничены возможности нашего глаза. Физики и астрономы в XIX в. проявляли большой интерес к оптическим иллюзиям, ибо их очень заботила надежность визуальных наблюдений. На рис. 1 показана T-образная фигура, предложенная Вильгельмом Вундтом, ассистентом знаменитого естествоиспытателя Германа Гельмгольца (1821-1894). При взгляде на эту картинку кажется, что вертикальная линия длиннее горизонтальной, хотя в действительности обе они имеют равную длину. Иллюзию Вундта можно обратить: на рис. 2 показана другая Т-образная фигура, у которой обе линии — горизонтальная и вертикальная — кажутся одинаковыми по длине, в действительности же горизонтальная линия длиннее.


Рис. 1.





Рис. 2.


Рис. 3, который предложил в 1899 г. Франц Мюллер-Лайер, дает нам пример иллюзии другого рода. Она известна под названием иллюзии Эрнста Маха. В действительности здесь обе горизонтальные линии имеют одинаковую длину.


Рис. 3.





Рис. 4.


На рис. 5 верхнее основание нижней трапеции кажется короче верхнего основания верхней трапеции. Попутно заметим, что, как ни трудно в это поверить, максимальная ширина нижней трапеции по горизонтали превышает ее высоту.


Рис. 5.


На рис. 6 поразительную иллюзию создают углы — тупой и острый: диагонали AB и AC двух параллелограммов равны, хотя диагональ AC кажется гораздо короче.


Рис. 6.


Удивительное впечатление производит также картинка с двумя наклонными линиями, пересекаемыми двумя вертикальными прямыми (рис. 7). Если правую наклонную линию продолжить, то она пересечется с левой в ее верхнем конце. Кажущаяся точка пересечения расположена несколько ниже. Эту хорошо известную иллюзию приписывают Иоганну Поггендорфу (около 1860).


Рис. 7.


Три горизонтальных отрезка на рис. 8 равны, хотя кажется, что они имеют различную длину. Эта иллюзия обусловлена величиной углов, образуемых с горизонтальными отрезками линий на концах. В определенных пределах больший угол вызывает иллюзию большего удлинения центрального горизонтального участка.


Рис. 8.


Поразительная иллюзия контраста изображена на рис. 9. Окружности в центре левой и правой фигур равны, хотя окружность в обрамлении шести окружностей большего радиуса кажется меньше, чем окружность в обрамлении шести окружностей меньшего радиуса. 


Рис. 9. 


Другой механизм лежит в основе иллюзии Мюллера-Лайера. Линии, отходящие от верхнего и нижнего концов вертикального отрезка A на рис. 10, воспринимаются как верхние и нижние края двух стен, образующих выступающий угол. Вертикальное ребро A выходит на первый план «сцены реального мира». Справа на рис. 10 две стены образуют угол, уходящий от зрителя. В результате вертикальное ребро B отступает на задний план. Убеждение в постоянстве размеров зрительно увеличивает длину ребра B и уменьшает длину ребра A.


Рис. 10.


Оптическую иллюзию, изображенную на рис. 11 и 12, первым описал Иоганн Цёлльнер. Он случайно заметил этот эффект на рисунке ткани. Длинные параллельные прямые на рис. 11 кажутся расходящимися, а на рис. 12 — сходящимися.


Рис. 11.



Рис. 12.


Картинка, демонстрирующая так называемую иллюзию Херинга (рис. 13), была впервые опубликована Эвальдом Херингом в 1861 г.: горизонтальные прямые кажутся здесь изогнутыми на фоне сходящихся наклонных прямых.


Рис. 13.


Ненадежность зрения подтверждается еще одним примером, придуманным С. Толанским. На рис. 14 изображена фигура, обычно встречающаяся в работах но статистике. Основание CD фигуры равно ее высоте. Если попросить зрителя провести отрезок, равный полуширине (половине CD) фигуры, то он, как правило, проводит отрезок AB, тогда как в действительности полуширине равен отрезок XY.


Рис. 14.


Нам всем хорошо знакома иллюзия, используемая широко, сознательно и высокопрофессионально, а именно реалистическая живопись. Художник намеренно пытается изобразить трехмерную сцену на плоском (двумерном) холсте. Одно из великих достижений художников эпохи Возрождения заключалось в создании математической схемы, известной под названием теории линейной перспективы, которая позволяет добиться желаемого эффекта.

С некоторыми простыми примерами иллюзии, рожденной линейной перспективой, мы встречаемся в своем повседневном опыте. Принцип, используемый в этих примерах и в теории линейной перспективы, состоит в том, что линии в реальной сцене, идущие от зрителя, должны казаться сходящимися в некоторой точке — так называемой точке схода. Простым примером могут служить два параллельных рельса железной дороги: кажется, что они сходятся-вдали в некоторой точке (рис. 15).


Рис. 15.


Эффект перспективы особенно заметен на рис. 16, где лучи, идущие в точку схода, проведены для создания иллюзии объемной сцены. Высокие ящики в действительности одинаковы (имеют одну и ту же длину, ширину и высоту), но кажется, что «дальний» ящик больше. Опыт говорит, что с увеличением расстояния до наблюдаемого предмета его размеры кажутся меньше, поэтому правый ящик выглядит больше, чем на самом деле.


Рис. 16.


Питая горячее пристрастие к реалистической живописи, мы охотно идем на то, чтобы быть обманутыми. Более того, этот обман доставляет нам удовольствие. Написанные в реалистической манере картины двумерны, но если они нарисованы в соответствии с законами математической теории линейной перспективы, то, глядя на них, мы испытываем такое ощущение, будто разглядываем трехмерную сцену. Хорошим примером такого рода «объемных изображений» может служить «Афинская академия» Рафаэля (рис. 17).


Рис. 17.


Резюмируя, мы можем утверждать, что математическая теория линейной перспективы позволяет использовать оптические иллюзии. Изображая на заднем плане предметы и человеческие фигуры меньших размеров, чем на переднем, художник добивается глубины изображения, ибо и в действительности человеческий глаз видит так, что далекие предметы кажутся ему меньше, чем близкие. Прибегают художники и к другому оптическому эффекту: краски более далеких предметов они смягчают, делая более блеклыми по сравнению с яркими красками предметов, находящихся на переднем плане.

В своем повседневном опыте мы сталкиваемся и с другими оптическими иллюзиями. Солнце и Луна вблизи горизонта выглядят по размерам больше, чем когда они стоят высоко в небе: вблизи горизонта оба светила кажутся нам ближе, и мы подсознательно поддаемся этой иллюзии. Разумеется, точные измерения показывают, что размеры Солнца и Луны остаются неизменными.

Измерив угол, под которым глаз видит диаметр Луны, мы обнаружили бы, что он близок к половине градуса. Так как половина дуги небосвода составляет 180°, угол, под которым виден диаметр Луны, равен 1/360 угловых размеров небосвода. Площадь же лунного диска составляет поразительно малую долю (около 1/100 000) площади небосвода, но если вспомнить, сколь великолепное зрелище являет собой наше ночное светило в полнолуние, то трудно поверить, что занимаемая им площадь столь ничтожна.

Ряд других оптических иллюзий связан с явлением рефракции, или преломления, света. Всем нам приходилось замечать, что палка, частично погруженная в воду, кажется переломленной в том месте, где она входит в воду.

С древних времен внимание людей привлекало такое проявление рефракции в воздухе как мираж. Это явление порождается совместным действием двух эффектов: разного преломления лучей света в неодинаково нагретых Солнцем (и потому имеющих различную плотность) слоях воздуха и полного внутреннего отражения. Когда нам случается в жаркий день ехать на автомобиле по длинному прямому участку гладкого ровного шоссе, то мы наблюдаем еще один мираж. Издали кажется, будто дорога впереди покрыта водой, но, подъехав ближе, мы убеждаемся, что воды нет и в помине. Чем же обусловлен такой эффект?

Мираж возникает только в том случае, если поверхность дороги сильно нагрета солнцем. Соприкасаясь с дорожным полотном, воздух нагревается, плотность его становится меньше, и более легкие нижние слои поднимаются вверх. Следовательно, свет в нижних слоях преломляется слабее, чем в верхних. Представим себе эту последовательность слоев с меняющейся плотностью (рис. 18). Проходя через них, свет попадает в наши глаза из нижних слоев, расположенных у самой земли. Наблюдатель видит свет, идущий в действительности из точки A, как бы приходящим из точки В. Именно такую картину он наблюдал бы, если бы перед ним простиралась водная поверхность, так как при взгляде на нее или на мокрую дорогу он увидел бы отражение неба. Таким образом, нагрев дороги создает такую же картину отражения света, какую мы привыкли связывать с водной поверхностью. Зрение вводит нас в заблуждение, и нам кажется, что дорога залита водой или что впереди расстилается водная поверхность.


Рис. 18.


Большинство приведенных нами примеров оптической иллюзии придуманы, причем намеренно, психологами. Но чтобы убедиться в постоянных ошибках зрения и понять, чем они вызваны, совсем не обязательно обращаться к искусственным примерам. Из-за рефракции света в земной атмосфере, мы продолжаем видеть Солнце и после того, как оно скрывается за горизонтом. Земля кажется нам плоской. Мы «своими глазами» видим, как Солнце обращается вокруг Земли, которая кажется нам неподвижной. Предположим, что Солнце стоит высоко в небе. На вопрос «Видите ли вы сейчас Солнце?» вы, не задумываясь, отвечаете утвердительно. Между тем испускаемый Солнцем свет доходит до нас только через восемь минут, а за это время может произойти немало событий (например, Солнце может взорваться). Когда Солнце стоит у самого горизонта, мы видим его не круглым, а несколько сплюснутым: вертикальный диаметр Солнца кажется нам несколько укороченным. Это явление также обусловлено преломлением солнечных лучей в атмосфере. Звезды же, находящиеся от нас на невообразимо больших расстояниях, кажутся нам крохотными пятнышками света.

Искажения видимых изображений часто называют иллюзиями, но «иллюзии» необычайно многообразны. Сигналы о цветовых ощущениях поступают в мозг от сетчатки глаза по трем каналам. Существуют три типа цветовых рецепторов (колбочек), каждый из них чувствителен к одному из трех первичных цветов: красному, зеленому или синему. Белый свет возбуждает все три цветовых канала. Каждый предмет поглощает одни световые лучи и отражает другие. Видимый нами цвет — это то, что предмет отражает. Белый предмет отражает падающий на него свет во всем спектре. Но является ли коричневый стол в действительности коричневым? Пламя свечи в ярко освещенной комнате выглядит тусклым, а в темной комнате — ярким. Кусок дерева кажется нам твердым, а в действительности представляет собой весьма рыхлую структуру из атомов, удерживаемых силами межатомного сцепления. Твердость куска дерева — это не твердость сплошной среды.

Ошибки свойственны и другим типам ощущений: температуры, вкуса, громкости и высоты звука, скорости движения. Примером может служить иллюзия в восприятии температуры. Опустите одну руку в таз с горячей водой, а другую — в таз с холодной. Выждав несколько минут, погрузите обе руки в таз с чуть теплой водой. Хотя обе руки теперь находятся в одной и той же воде, руке, бывшей перед этим в тазу с горячей водой, она кажется прохладной, тогда как другой руке — теплой. Интересно отметить, что если руку погрузить в воду, нагреваемую (или охлаждаемую) постепенно, так что изменение температуры происходит незаметно, то рука успевает адаптироваться к изменению температуры.

Вкусовые ощущения также порождают иллюзии. Сладкие напитки постепенно начинают казаться менее сладкими. Подержите несколько секунд во рту крепкий раствор сахара в воде, а затем попробуйте на вкус обычную пресную воду — вы отчетливо ощутите солоноватый привкус.

Ошибки в оценке скорости общеизвестны. После получасовой поездки по скоростной автотрассе нам кажется, что автомобиль, едущий со скоростью около 50 км/ч, тащится до смешного медленно. Общеизвестна иллюзия, возникающая при встрече двух поездов на станции. Если ваш поезд стоит, а встречный движется, то вы легко впадаете в заблуждение, и вам кажется, что ваш поезд также движется.

Некоторые искажения в нашем чувственном восприятии возникают, когда наши рецепторы утомляются или адаптируются к продолжительному и интенсивному раздражению. Такое может случиться с любым из наших органов чувств и привести к весьма серьезным ошибкам. В качестве примера можно привести хотя бы иллюзию тяжести. Если в течение нескольких минут подержать в руках тяжелый предмет, то после этого другой, более легкий предмет покажется нам почти невесомым.

Помимо иллюзий, связанных с чувственным восприятием реальных физических объектов или явлений, необходимо иметь в виду и ограниченность восприятия наших органов чувств. Нормальное человеческое ухо способно различать на слух частоты в пределах 20-20 000 Гц (колебаний в секунду). Нормальный человеческий глаз воспринимает свет с длиной волны (см. гл. VII) в диапазоне 380-760 нм (1 нм = 10-9 м). И звук, и свет (точнее электромагнитные волны) существуют и физически реальны в гораздо более широком диапазоне, чем тот, который доступен нашим органам чувств. Даже белый свет не белый, а, как показал еще Ньютон, представляет собой смесь многих частот. Наш глаз регистрирует только смесь, не разлагая ее на отдельные компоненты. В действительности в реальном мире нет красок. Цвет по словам Гёте, — это то, что мы видим.

Мы воспринимаем непосредственно не физический объект, а информацию о нем, которую дают наши органы чувств. Они же дают и всегда будут давать не подлинное изображение объективной реальности, доступной или недоступной нам, а скорее картину отношений между человеком и реальностью.

Тем не менее люди считают, что наша интуиция действует и за пределом чувственного опыта и мы можем с уверенностью полагаться на нее. Попробуем разобраться, сколь надежна человеческая интуиция.

Предположим, что некто совершает поездку на автомобиле из Нью-Йорка в Буффало (расстояние 400 миль) и по дороге туда развивает скорость 60 миль/ч, а по дороге обратно — всего лишь 30. Какова его средняя скорость? Интуиция почти заведомо подсказывает нам, что средняя скорость равна 45 миль/ч. Правильный же ответ, который получается, если расстояние разделить на время в пути, оказывается иным: около 40 миль/ч.

Рассмотрим еще несколько примеров проявления нашей хваленой интуиции. Предположим, что мы открыли в банке счет на сумму P долл. Банк выплачивает вкладчикам i процентов годовых, причем проценты начисляются не от начальной, а от текущей суммы (сложные проценты). Мы хотим выждать, покуда исходная сумма не удвоится. Предположим, что это произойдет через n лет. Интуиция подсказывает нам, что если бы мы открыли счет на сумму 2P долл., то она удвоилась бы быстрее, чем за n лет. В действительности же нам пришлось бы ждать удвоения нашего вклада одинаково долго.

Предположим, что некто сначала поднимается на веслах вверх по реке на 2 мили, а затем спускается вниз по реке на 2 мили. Скорость течения — 3 мили/ч. В стоячей воде наш гребец способен развивать скорость 5 миль/ч. Сколько времени — уйдет у него на весь путь туда и обратно? Интуиция подсказывает нам, что, когда лодка плывет вниз по реке, течение помогает ровно настолько, насколько оно мешает, когда лодка плывет вверх по реке. Следовательно, гребец преодолевает расстояние 4 мили со скоростью 5 миль/ч, затрачивая на весь путь туда и обратно 4/5 ч. Интуиция обманывает нас; на весь путь туда и обратно гребец затрачивает в действительности час с четвертью.

Предположим, что, желая приготовить мартини с более пикантным вкусом, мы добавляем к кварте джина кварту вермута. Интуиция подсказывает, что получатся две кварты мартини. Правильный ответ и на этот раз расходится с интуитивно ожидаемым: мартини получится одна и девять десятых кварты. Аналогичным образом, при смешивании пяти пинт воды и семи пинт спирта не получится двенадцать пинт смеси. В обоих случаях молекулы располагается более экономно.

Обратимся теперь к проблеме времени. Мы можем говорить о секунде, следующей за данной секундой. Секунда — всего лишь продолжительность определенного интервала времени. Интуиция подсказывает нам, что за каждым мигом есть следующий. Но миг, или мгновение, — это не продолжительность интервала времени (вспомним хотя бы: «И в этот миг часы пробили один раз»). Нельзя не вспомнить и о парадоксе, впервые сформулированном Зеноном Элейским (V в. до н.э.). Летящая стрела в любой момент времени занимает определенное положение в пространстве. Когда стрела успевает переместиться из одного положения, в другое?

Рассмотрим другую задачу, тесно связанную с временем. Часы пробили шесть ударов за пять секунд. За сколько секунд эти часы пробьют двенадцать ударов? Интуиция подсказывает: за десять. Но шесть ударов разделены пятью паузами, а двенадцать ударов — одиннадцатью. Следовательно правильный ответ: за одиннадцать, а не за десять секунд.

Приведем еще несколько примеров того, как нас подводит интуиция. Рассмотрим два прямоугольника с равными периметрами. Должны ли они иметь равную площадь? На первый взгляд кажется, что должны. Но, как показывают нехитрые расчеты, равенство площадей отнюдь не обязательно. Естественно напрашивается вопрос: какой из прямоугольников с одинаковыми периметрами имеет наибольшую площадь? Допустим, мы сооружаем забор вокруг участка земли прямоугольной формы и всю его площадь намереваемся использовать под посевы. Ясно, что наиболее желательным в этом случае является прямоугольник, обладающий при данном периметре наибольшей площадью. Это — квадрат.

Аналогичная проблема возникает при рассмотрении двух коробок одинакового объема. Одинакова ли у них площадь поверхности? Предположим, что объем каждой коробки равен 100 м3. Одна коробка имеет размеры 50×1×2 м3, другая — 5×5×4 м3. Соответственно площадь поверхности коробки составляет 204, а другой — 130 м2. Разница весьма ощутимая.

Еще один пример того, как может заблуждаться наша интуиция, — история о молодом человеке, вставшем перед необходимостью выбора, какой из двух работ отдать предпочтение. Начальный оклад в обоих случаях одинаков: 1800 долл. в год, но в одном месте обещали ежегодную прибавку в 200 долл., а — в другом — каждые полгода 50 долл. Какое из предложений заманчивее? На первый взгляд кажется, что ответ очевиден: ежегодная прибавка в 200 долларов более весома, чем прибавка, дающая в год лишь 100 долл. Но займемся несложными расчетами и выясним, сколько долларов получит молодой человек на одной и другой работе за последовательные полугодия. На первой работе ему выплатят 900, 900, 1000, 1000, 1100, 1100, 1200, 1200…, на второй (с прибавкой в 50 долларов каждые полгода) — 900, 950, 1000, 1050, 1100, 1150, 1200, 1250…

Из сравнения этих двух последовательностей видно, что вторая работа сулит молодому человеку больший доход за второе полугодие каждого года и такой же доход, как первая работа, за первое полугодие каждого года. Нехитрые подсчеты позволяют разобраться, почему так происходит. Прибавка в 50 долл. за каждые полгода означает, что заработная плата возрастает на 50 долл. за шесть месяцев, или на 100 долл. за год. Иначе говоря, получив за год две прибавки по 50 долл., молодой человек с начала следующего года будет получать столько же, сколько он получил бы, имея годовую прибавку в 200 долларов. С этой точки зрения к началу каждого следующего года оба предложения оказываются одинаково выгодными. Но на второй работе молодой человек начинает получать прибавку уже через полгода, тогда как на первой ему пришлось бы ждать прибавки целый год. Именно поэтому на второй работе он получает за второе полугодие больше, чем на первой.

Рассмотрим еще одну простую задачу. Торговец продает яблоки по 5 центов за пару и апельсины по 5 центов за три штуки. Боясь просчитаться, торговец решает смешать фрукты и продавать их по 10 центов за пять штук. Такой шаг на первый взгляд представляется разумным. От продажи двух яблок и трех апельсинов, т.е. пяти штук фруктов, он выручил бы раньше 10 центов. Смешав яблоки с апельсинами, торговец, как ему казалось, получил возможность продавать любые фрукты без разбора по 2 цента за штуку, тем самым существенно упростив расчеты с покупателями.

Но в действительности торговец обманул самого себя. В этом нетрудно убедиться на примере. Предположим, что торговец вынес на продажу дюжину яблок и дюжину апельсинов. Обычно он, продавая яблоки по 5 центов за пару, выручил бы за дюжину яблок 30 центов. Продавая апельсины по 5 центов за три штуки, торговец выручил бы за дюжину апельсинов 20 центов. Следовательно, его общая выручка составила бы 50 центов. Продавая же две дюжины фруктов по 10 центов за пяток, он выручил бы по 2 цента за штуку, или всего 48 центов. Средняя цена одного фрукта равна не 2 центам, a 21/12 цента.

Торговец понес убыток из-за того, что допустил ошибку в своих рассуждениях. Он предполагал, что средняя цена яблок и апельсинов должна быть по 2 цента за штуку, тогда как средняя цена яблока составляет 21/2 цента, а средняя цена апельсина — 12/3 цента. Средняя цена одного фрукта равна 21/12 цента, а не 2 центам.

Приведем еще одну распространенную ошибку интуиции. Предположим, у нас имеется сад круглой формы радиусом 10 м. Мы хотим обнести его стеной, которая отстояла бы всюду на 1 м от границы сада. Насколько периметр стены длиннее периметра самого сада? Ответить на этот вопрос нетрудно. Периметр сада вычисляется по формуле геометрии: длина окружности равна 2πr, где r — радиус, а π — число, которое приближенно равно 22/7. Следовательно, периметр сада составляет 2π×10 м. По условию стена должна на 1 м отстоять от границы сада, поэтому радиус стены равен 11 м, а ее длина — 2π×11 м., Разность длин двух окружностей равна 22π − 20π = 2π, т.е. стена должна быть на 2π м длиннее периметра сада. Пока ничего удивительного нет.

Рассмотрим теперь аналогичную задачу. Предположим, что нам необходимо проложить дорогу, которая опоясывала бы земной шар (для современного инженера это не слишком трудная задача), и что дорога повсюду должна проходить на высоте 1 м над поверхностью Земли. На сколько метров такая дорога была бы длиннее окружности Земли? Прежде чем приниматься за вычисление этой величины, попытаемся оценить ее из интуитивных соображений. Средний радиус Земли составляет около 6370 км. Так как это примерно в 6 млн. раз больше радиуса сада из предыдущей задачи, можно было бы ожидать, что и приращение длины дороги (по сравнению с длиной окружности Земли) примерно во столько же раз больше приращения длины стены (по сравнению с периметром сада). Напомним, что последнее было равно 2π, м. Таким, образом, интуитивные соображения приводят к величине 6 000 000×2π м. Даже если эта оценка вызывает у вас какие-то возражения, вы, вероятно, согласитесь с тем, что длина дороги должна быть гораздо больше окружности земного шара.

Простой расчет позволяет поднять, как обстоит дело в действительности. Чтобы избежать вычислений с большими числами, обозначим радиус Земли в метрах через r. Тогда длина окружности Земли равна 2πr, а длина дороги — 2π(r + 1) м. Но последнюю величину можно записать в виде 2πr + 2π. Следовательно, дорога длиннее окружности Земли ровно на 2π м, т.е. ровно на столько, на сколько стена длиннее периметра сада, хотя дорога опоясывает огромную Землю, а стена — небольшой сад. Формулы позволяют утверждать нечто большее: независимо от значения r разность 2π(r + 1) − 2πr всегда равна 2π. Это означает, что внешняя окружность, проходящая на расстоянии 1 м от внутренней, всегда (независимо от радиуса) на 2π м длиннее внутренней окружности.

Интуиция подводит нас и во многих других ситуациях. Человек, находящийся на некотором расстоянии от яблони, видит, что одно яблоко вот-вот упадет, и хочет попасть в него из ружья. Он знает, что к тому времени, когда пуля долетит до места, где яблоко находилось в момент выстрела, оно успеет пройти в свободном падении некоторое расстояние. Должен ли человек целиться в точку, расположенную ниже яблока, чтобы попасть в цель? Нет. Он должен прицелиться и выстрелить в яблоко: за то время, что пуля летит до яблока, они опустятся вниз по вертикали на одно и то же расстояние.

В качестве последнего примера, показывающего, как интуитивные соображения с большой вероятностью приводят к неверному ответу, рассмотрим задачу о теннисном турнире. Для участия в турнире записалось 136 спортсменов. Организаторы хотели бы составить расписание встреч с таким расчетом, чтобы определить победителя за минимальное число встреч. Сколько встреч для этого потребуется? Интуиция бессильна здесь чем-нибудь помочь. Между тем ответ прост: для выявления победителя требуется провести 135 встреч, так как каждый выбывший из турнира спортсмен должен потерпеть по крайней мере одно поражение, а всякий, кто проиграл встречу, выбывает из турнира.

Почему мы испытываем иллюзии, основываясь на своих ощущениях, и совершаем ошибки, доверяясь интуиции? Иллюзии, порождаемые различными органами чувств, вероятно, всего лучше объяснило бы исследование физиологии последних, но для наших целей достаточно понять, что и в иллюзиях, и в ошибочных интуитивных предсказаниях повинны не только органы чувств, но и мозг человека. Что касается интуиции, то она формируется как результат взаимосвязи опыта, чувственных восприятий и грубых догадок; в лучшем случае интуицию можно было бы назвать дистиллированным опытом. Последующий анализ или эксперименты подтверждают или опровергают интуитивные предсказания. Иногда интуицию определяют как силу привычки, коренящейся в психологической инерции.

Говоря о чем-то как о заведомо воспринимаемом, мы тем самым предполагаем возможность отделения восприятия от того, кто воспринимает. Но такое отделение невозможно, ибо не может быть восприятия без воспринимающего субъекта. Что же такое объективная реальность? Быть может, несколько наивно мы считаем объективным то, по поводу чего сходятся во мнении все воспринимающие субъекты. Так, Солнце и Луна существуют. Солнце желтое, Луна голубая.

В своем «Руководстве по физиологической оптике» (1896) Гельмгольц писал:


Нетрудно видеть, что все свойства, которые мы им [объектам реального мира] приписываем, означают не более чем воздействия, производимые ими либо на наши органы чувств, либо на другие внешние объекты. Цвет, звук, вкус, запах, температура, гладкость, твердость относятся к первому классу; они соответствуют воздействиям на наши органы чувств. Химические свойства аналогичным образом связаны с реакциями, т.е. воздействиями, производимыми рассматриваемым физическим телом на другие. Так же обстоит дело и с другими физическими свойствами тел: оптическими, электрическими, магнитными… Отсюда следует, что в действительности свойства объектов в природе вопреки их названиям не означают ничего присущего самим объектам как таковым, а всегда указывают на их отношение к некоторому второму телу (в том числе к нашим органам чувств).


Что мы можем противопоставить иллюзиям и ошибочной интуиции? Наш самый эффективный ответ состоит в использовании математики. Сколь он эффективен, станет ясно из последующих глав. Мы хотим показать (и видим в этом свою главную цель), что в окружающем нас мире существуют явления, столь же реальные, как и те, которые мы воспринимаем посредством наших органов чувств, но экстрасенсорные или даже вообще не воспринимаемые, и что в нашей современной культуре мы используем эти экстрасенсорные реальные явления и полагаемся на них ничуть не меньше, если не больше, чем на свои чувственные восприятия.

Мы отнюдь не утверждаем, будто математика не использует чувственные восприятия и интуицию во всякого рода наводящих и эвристических соображениях. Но математика превосходит все эти подсказки так же, как алмаз превосходит кусок стекла, и то, что математика открывает нам о внешнем мире, гораздо удивительнее зрелища звездного неба.

II

Зарождение математики и ее роль в познании

Учение о природе будет содержать науку в собственном смысле лишь в той мере, в какой может быть применена в ней математика.{2} Кант
Боги открыли людям не все. В поиск пустившись, люди сами открыли немало. Ксенофан
Платье нередко многое говорит о человеке. Шекспир
Хотя информация, которую мы получаем от наших органов чувств, рассматривается, анализируется, подвергается экспериментальной проверке и хотя мы располагаем ныне такими мощными вспомогательными средствами, как телескоп, микроскоп и различного рода приборы, позволяющие производить всевозможные наблюдения, а также точнейшими измерительными устройствами, полученное с их помощью знание ограниченно и может считаться достоверными лишь в определенных пределах. Нам гораздо больше известно, чем раньше, о числе планет, о существовании у некоторых из них спутников, о темных пятнах на Солнце, о применении компаса в навигации. Но достигнутый прогресс знания составляет лишь крохотную толику того поистине неисчерпаемого множества разнообразных и важных явлений, которые нам необходимо и желательно знать.

Решающий, гигантский по своим масштабам и непреходящий по своему значению шаг к расширению и приумножению нашего знания внешнего мира был сделан, когда для изучения его стали применять математику. Математика не только уточнила и расширила наше знание явлений, доступных органам чувств человека, но и позволила открыть весьма важные явления, не воспринимаемые нами, но оттого не менее реальные по их воздействию, чем прикосновение к раскаленной плите. То, что в нашей повседневной жизни незримо присутствуют такие физические «духи», не вызывает сомнений. О том, как они были открыты, и пойдет наш рассказ.

Для нас, получивших современное образование, природа и «земные» приложения математики хорошо известны и воспринимаются как нечто само собой разумеющееся. Еще цивилизации, которые мы считаем творцами западно-европейской математики, а именно цивилизации Древнего Египта и Вавилона, около 3000 лет до н.э. создали набор полезных, но не связанных между собой правил и формул для решения практических задач, с которыми люди сталкивались в повседневной жизни. Вавилоняне и египтяне не сознавали, что математика способна распространить их знание природы за пределы доступного чувственному опыту. Созданную ими математику можно сравнить с алхимией, предшествовавшей химии.

Математика как логический вывод и средство познания природы — творение древних греков, которым они начали всерьез заниматься примерно за шесть веков до новой эры. Не сохранилось никаких документов VI-V вв. до н.э., способных рассказать нам, что заставило древних греков прийти к новому пониманию математики и ее роли. Вместо этого мы располагаем лишь более или менее правдоподобными догадками историков, один из которых, в частности, утверждает, что греки обнаружили противоречия в результатах, полученных древними вавилонянами при определении площади круга, и вознамерились выяснить, какой из результатов верен. Аналогичные расхождения обнаружились и по другим вопросам. В качестве еще одного объяснения историки ссылаются на философские интересы греков, но это только догадки, которые скорее поднимают вопросы, чем дают объяснения. Кое-кто считает, что дедуктивная математика ведет свою родословную от аристотелевской логики, возникшей в пылу дискуссий на общественно-политические темы. Однако древнегреческая математика зародилась до Аристотеля.

По-видимому, нам остается лишь констатировать, что у греков начиная с VI в. до н.э. сложилось определенное миропонимание, сущность которого сводилась к следующему. Природа устроена рационально, а все явления протекают по точному и неизменному плану, который в конечном счете является математическим. Человеческий разум всесилен, и если эту могучую силу приложить к изучению природы, то лежащий в основе мироздания математический план удастся раскрыть и познать.

Как бы то ни было, именно греки были первыми, кому достало дерзости и гения дать рациональное объяснение явлений природы. Неуемная тяга греков к познанию была окрашена волнующими, переживаниями поиска и исследования. Занимаясь изысканиями, греки наносили новые области знания на «карты» (примером такой «карты» может служить геометрия Евклида), чтобы те, кто идет следом, могли скорее достичь границ неведомого и принять участие в освоении новых областей.

На несколько более прочной исторической основе мы стоим, когда ссылаемся на то, что Фалес (около 640-546 до н.э.) из греческого города Милета в Малой Азии доказал несколько теорем евклидовой геометрии. Никаких документов того времени не сохранилось, и утверждение, что Фалес Милетский доказал теоремы логическими средствами, довольно спорно. Не подлежит, однако, сомнению, что и он, и его современники в Малой Азии размышляли о плане, заложенном в основы мироздания.

Более достоверно известно, что разработанная пифагорейцами (мистическо-религиозным орденом, существовавшим в VI в. до н.э.) программа выявления рационального плана, лежащего в основе природы, предусматривала использование математики. Пифагорейцев поражало, что физически столь разнообразные объекты обнаруживают тождественные математические свойства. Например, Луна и резиновый мяч имеют одинаковую форму и много других общих свойств, присущих всем шарам. Разве не очевидно, что математические соотношения, кроющиеся за внешним разнообразием, и должны быть сущностью явлений?

Если говорить более конкретно, то пифагорейцы усматривали сущность вещей и явлений в числе и числовых соотношениях. Число для них, было первым принципом в описании природы, и оно же считалось материей и формой мира. По преданию, пифагорейцы полагали, что «все вещи суть числа». Их вера в число станет более понятной, если учесть, что пифагорейцы представляли числа наглядно в виде множеств точек (возможно, символизировавших для них частицы) и располагали точки в виде фигур, которые могли представлять реальные объекты. Например, множества  и  назывались соответственно треугольными и квадратными числами и вполне могли представлять треугольные и квадратные объекты. Не подлежит сомнению и то, что, когда пифагорейцы развили и усовершенствовали свое учение, они начали понимать числа как абстрактные понятия, а физические объекты как их конкретные реализации.

Пифагорейцам принадлежит идея сведения музыкальных интервалов к простым соотношениям между числами; они пришли к этой мысли, совершив два открытия. Первое — что высота звука, издаваемого колеблющейся струной, зависит от ее длины, и второе — что гармонические созвучия издают струны, длины которых относятся между собой, как некоторые целые числа. Например, гармоническое созвучие возникает, если заставить колебаться две одинаково натянутые струны, одна из которых вдвое длиннее другой. Музыкальный интервал между издаваемыми такими струнами тонами ныне называется октавой. Другое гармоническое созвучие создают две струны, длины которых относятся, как три к двум: в этом случае тон, издаваемый более короткой струной, на квинту выше тона более длинной. Длины любых двух струн, рождающих гармоническое созвучие, действительно относятся между собой, как целые числа.

Движения планет пифагорейцы также сводили к числовым соотношениям. По их представлениям, тела, перемещаясь в пространстве, производят звуки, причем быстро движущееся тело издает более высокий звук, чем движущееся медленно. Возможно, такого рода идеи были навеяны свистящим звуком, который возникает при раскручивании веревки с тяжелым предметом на конце. Согласно пифагорейской астрономии, чем больше расстояние от планеты до Земли, тем быстрее планета движется. Следовательно, звуки, издаваемые планетами, изменяются в зависимости от их удаленности от Земли, и все звуки подчиняются определенной гармонии. Как и всякая гармония, такая «музыка сфер» может быть сведена к чисто числовым соотношениям. Но тогда и движения планет можно свести к числовым соотношениям.

Другие характерные особенности природы пифагорейцы также сводили к числу. Особенно высоко они ценили числа 1, 2, 3, 4, образующие четверицу, или тетрактис. По преданию, клятва пифагорейцев гласила: «Клянусь именем Тетрактис, ниспосланной нашим душам. В ней источник и корни вечно цветущей природы». Природа, по мнению пифагорейцев, состояла из «четверок» — четырех геометрических элементов (точки, линии, поверхности и тела) и четырех материальных элементов (земли, воздуха, огня и воды), — игравших важную роль в философии Платона.

Четыре числа, входившие в тетрактис, в сумме давали десять, поэтому число «десять» пифагорейцы провозгласили идеальным числом и усматривали в нем символ всего мира. Но, так как число «десять» идеально, в небесах должны быть десять тел. Чтобы получить нужное число небесных тел, пифагорейцы придумали Центральный огонь, вокруг которого обращаются Земля, Солнце, Луна и пять известных тогда планет, а также Антиземлю, лежащую по другую сторону от Центрального огня. Ни Центральный огонь, ни Антиземля невидимы, так как мы обитаем на той части Земли, которая обращена в противоположную от них сторону. Так пифагорейцы построили астрономическую теорию, основанную на числовых соотношениях.

Приведенные примеры позволят нам понять высказывание, приписываемое знаменитому пифагорейцу Филолаю, жившему в V в. до н.э.:


Если бы ни число и его природа, ничто существовавшее нельзя было бы постичь ни само по себе, ни в его отношении к другим вещам… Мощь числа проявляется, как нетрудно заметить, не только в деяниях демонов, и богов, но и во всех поступках и помыслах людей, во всех ремеслах и музыке.
([13], с. 21.)


Натурфилософию пифагорейцев трудно назвать состоятельной. Не удалось им продвинуться сколько-нибудь далеко ни в одной из областей естествознания. Их теории с полным основанием можно назвать поверхностными. Тем не менее то ли благоприятное стечение обстоятельств, то ли гениальное прозрение позволили пифагорейцам создать два учения, первостепенное значение которых обнаружилось лишь позднее. Первое — что природа устроена на математических принципах и второе — что числовые соотношения суть основа, единая сущность и инструмент познания порядка в природе.

Атомисты Левкипп (ок. 440 до н.э.) и Демокрит (ок. 460 — ок. 370 до н.э.) также отводили математике немаловажную роль. Они считали, что вся материя состоит из атомов, различающихся положением, размерами и формой. Эти свойства атомов физически реальны. Все остальные свойства, такие как вкус, теплота и цвет, присущи не самим атомам, а обусловлены воздействием атомов на воспринимающего субъекта. Такое чувственное знание ненадежно, так как меняется от одного воспринимающего субъекта к другому. Подобно пифагорейцам, атомисты утверждали, что реальность, лежащая в основе постоянно меняющихся свойств реального мира, может быть выражена на языке математики. Все происходящее в этом мире строго предопределено математическими законами.

Первым из греков, кому мы обязаны наиболее существенным продвижением в математическом исследовании природы, был Платон (427-347 до н.э.). Он не только воспринял некоторые учения пифагорейцев, но и был выдающимся философом, чьи идеи во многом определяли развитие мысли в Греции достопамятного IV в. до н.э. Платон основал в Афинах Академию, ставшую центром притяжения мыслителей его времени и просуществовавшую девять веков. Свои взгляды Платон особенно отчетливо и ясно изложил в диалоге «Филеб». В вводной главе «Историческая ретроспектива» мы упоминали о том, что реальный мир, согласно Платону, построен на математических принципах. То, что воспринимают наши органы чувств, не более чем несовершенное представление реального мира. Реальность и рациональность физического мира может быть постигнута только с помощью математики, ибо «Бог вечно геометризует». Платон пошел дальше, чем пифагорейцы: он стремился не только познать природу, но и выйти за ее пределы, чтобы постичь идеальный мир, построенный на математических принципах, который, по мысли Платона, и есть подлинная реальность. Чувственное, преходящее и несовершенное подлежало замене на абстрактное, вечное и совершенное. Платон полагал, что несколько тонких наблюдений внешнего мира позволят составить представление об основных идеях, которые затем могут быть развиты разумом. Необходимость в дальнейших наблюдениях отпадала. После тога как исходные наблюдения произведены, природа должна быть полностью заменена математикой. Платон подверг критике пифагорейцев за то, что они, исследовав числа, в которых запечатлена гармония музыкальных созвучий, так и не дошли до изучения естественной гармонии самих чисел. Для Платона математика была не только посредником, между идеями и данными чувственного опыта: математический порядок он считал точным отражением самой сути реальности. Платон заложил также основы дедуктивно-аксиоматического метода, который мы кратко обсудим. В этом методе Платон видел идеальный способ систематизации уже накопленного знания и получения нового.

Наиболее выдающиеся из последователей Платона разделяли его мысль, что математика занимается изучением внешнего мира и позволяет получать о нем истинное знание. Хотя Аристотель и его сторонники занимали несколько иную позицию, чем платоники, тем не менее по вопросу об отношении математики к реальному миру школа Аристотеля также отстаивала версию о математическом плане, лежащем в основе всего мироздания. Аристотель утверждал, что математические абстракции почерпнуты из материального мира, однако в его сочинениях нигде не говорится, что математика вносит поправки в чувственное знание, расширяя его. Аристотель считал, что в основе движения небесных тел лежат некие математические принципы, но для него математические законы были не более чем описанием событий. Самым важным для Аристотеля была конечная причина, или цель событий, т.е. он исходил из телеологической концепции.

Когда Александр Македонский (356-323 до н.э.) вознамерился покорить мир, он перенес центр греческой Ойкумены из Афин в один из городов Египта, который он с присущей ему «скромностью» переименовал в Александрию. Именно там, в Александрии, Евклид (около 300 до н.э.) написал первый достопамятный документ математического знания — свои классические «Начала». В этой работе впервые было применено доказательство. Помимо «Начал» Евклиду принадлежат также сочинения по механике, оптике и музыке, в которых основная роль отведена математике. Математика выступала как идеальная версия того, что составляло содержание известного нам реального мира. Некоторые из теорем Евклида несли в себе новое знание геометрических фигур и свойств целых чисел. Но поскольку оригинальные манускрипты Евклида до нас не дошли, мы не знаем, было ли это новое знание его целью и в какой мере он заботился о надежности знания, добытого чувственным опытом. Одно можно сказать с уверенностью: Евклид проложил путь другим творцам и создателям математики.

Греки «Александрийского периода» (около 300 до н.э. — 600 н.э.) необычайно расширили математику. Упомянем лишь обширный труд Аполлония (ок. 262 — ок. 190 до н.э.) «Конические сечения», серию первоклассных работ Архимеда (ок. 287-212 до н.э.) по многим областям математики и механики, труды по тригонометрии Гиппарха, Менелая и Птолемея (ок. 90-160) и в конце периода «Арифметику» Диофанта. Во всех этих сочинениях так же, как в «Началах» Евклида, излагались идеальные версии объектов, отношений и явлений реального мира. Все они внесли свою лепту в расширение нашего знания.

Греческая цивилизация погибла под натиском римских и мусульманских завоевателей. С ее падением Европа вступила в период Средневековья, продолжавшийся целое тысячелетие — с 500 по 1500 г. Главенствующую роль в средневековой культуре играла церковь, рассматривавшая жизнь на Земле как подготовку к загробной жизни на небесах. Исследование природы любыми средствами, как математическими, так и нематематическими, считалось предосудительным занятием. Тем не менее отдельные мыслители и даже целые группы (Роберт Гроссетест, Роджер Бэкон, Джон Пекхэм, мертонианцы из Оксфорда, к числу которых принадлежали Уильям Оккама, Томас Брадвар, Абеляр из Бата, Тьерри из Шартра и Уильям из Конка) предпринимали попытки продолжить математические и физические исследования. В частности, они видели в математике не противоречащее истине описание физических явлений, и некоторые из них, главным образом Абеляр и Тьерри, настаивали на экспериментальном изучении природы. Все эти мыслители считали, что реальный физический мир в основе своей рационален и математическое рассуждение способно дать знание о нем. Не следует забывать и о вкладе, который в период Средневековья внесли в математику индийцы и арабы и который постепенно вошел в общий свод математического знания.

Началом современного периода, о котором в основном и пойдет речь в нашей книге, принято считать конец XV — начало XVI вв. Что касается XVI в., то его часто называют эпохой Ренессанса — возрождения греческой мысли. Для нас сейчас несущественно, каким образом греческие манускрипты попали в Италию, ставшую центром Возрождения.

Европейцы не сразу откликнулись на новые веяния. На протяжении этого периода, который нередко называют гуманистическим, европейские мыслители не столько следовали высоким целям древних греков, сколько изучали труды греческих авторов, но примерно к 1500 г. европейские умы, воспринявшие направленность античной мысли — приложение разума к исследованию природы и поиск математического плана, лежащего в основе мироздания, — принялись действовать. Однако они столкнулись с серьезной проблемой, поскольку цели, которые ставили перед собой греки, находились в противоречии с культурной традицией, сложившейся в Европе того периода. В то время как греки не сомневались, что природа устроена на математических принципах и неизменно и неуклонно следует некоему идеальному плану, мыслители конца Средневековья приписывали весь план и все действие христианскому Богу. Именно Бог был для них творцом и создателем плана мироздания, и все явления природы неукоснительно следовали предначертаниям этого высшего существа. Весь мир — творение Бога и беспрекословно подчиняется его воле. Математики и естествоиспытатели эпохи Возрождения, будучи правоверными христианами, разделяли эту доктрину. Но католическое вероучение отнюдь не включало в себя греческое учение о математическом плане, лежащем в основе природы. Каким же образом можно согласовать тогда попытку понять созданное Богом мироздание с поиском математических законов природы? Пришлось добавить (к уже существовавшим учениям) новый тезис — о том, что христианский Бог сотворил мир на математической основе. Католическое вероучение, постулирующее первостепенное значение попыток понять волю Господа и его творения, приняло форму поиска математического плана, заложенного Богом в основу мироздания. Как мы вскоре убедимся, узнав некоторые подробности, работа математиков на протяжении XVI-XVIII вв. была по существу религиозным исканием. В поисках математических законов природы они священнодействовали, раскрывая славу и величие творения божьего.

Математическое знание, истина о плане, положенном Богом в основу мироздания, при таком подходе обретали столь же боговдохновенный характер, как и любая строка Священного писания. Разумеется, смертным не дано постичь божественную мудрость плана с той полнотой и ясностью, с какой она ведома самому Господу Богу, но люди могли смиренно и с подобающей скромностью по крайней мере пытаться приблизиться к божественному разуму и понять, как устроен мир.

Можно пойти дальше и утверждать, что математики XVI-XVIII вв. были уверены в существовании математических законов, лежащих в основе всех явлений природы, и настойчиво стремились найти их, ибо исходили из априорного убеждения, что Бог и эти законы включил в общую схему мироздания. Каждое открытие закона природы провозглашалось как еще одно свидетельство мудрости Бога, а не проницательности исследователя. Убеждения и взгляды математиков и естествоиспытателей распространились по всей Европе эпохи Возрождения. Незадолго до того обнаруженные работы греческих авторов противостояли глубоко религиозному христианскому миру, и духовные лидеры Возрождения, рожденные в одном мире, но тяготевшие к другому, слили учения обоих миров воедино.

Наряду с этим новым интеллектуальным увлечением стало приобретать все более широкую поддержку направление, основанное на идее «назад к природе». Многие естествоиспытатели отвергли нескончаемое умствование на основе догматических принципов, туманных по смыслу и оторванных от опыта, и обратились к самой природе как источнику подлинного знания. К началу XVII в. в Европе сложились предпосылки того, что нередко называют «научной революцией». Многие события способствовали или ускорили ее наступление: географические экспедиции открыли новые земли и народы; изобретение телескопа и микроскопа позволило обнаружить новые явления; компас облегчил навигацию в условиях открытого моря; гелиоцентрическая теория Коперника (см. гл. IV) заставила по-новому взглянуть на нашу планетную систему. Реформация пошатнула догмы католицизма. Математика вскоре снова стала играть главную роль — ключа к природе.

Бегло обозревая исторический фон, на котором происходило развитие европейской математики, мы стремились главным образом показать, что математика и применение ее к исследованию природы (основная тема последующих глав нашей книги) не возникли неожиданно, как гром среди ясного неба. Свое внимание мы сосредоточим не на элементарной математике, дающей средства для корректировки и расширения нашего знания о явлениях, в основном доступных нашим органам чувств, а на успехах, достигнутых математикой в открытии и описании явлений, либо не доступных непосредственному восприятию, либо вообще не воспринимаемых нами. При этом нам не понадобится постигать тонкости математических методов, но важно будет понять, каким образом математика позволяет описывать физические явления и получать знание о них.

Каковы существенные особенности математического метода? Первая отличительная особенность — введение основных понятий. Некоторые из таких понятий, например точка, линия и целое число, подсказаны непосредственно материальным, или физическим, миром. Помимо элементарных понятий в математике немаловажную роль играют понятия, созданные человеческим разумом. Примерами таких понятий могут служить понятия отрицательного числа, буквенные обозначения классов чисел, комплексные числа, функции, всевозможные кривые, бесконечные ряды, понятия математического анализа, дифференциальные уравнения, матрицы и группы, многомерные пространства.

Некоторые из перечисленных нами понятий полностью лишены интуитивной основы. Другие, например понятие производной (мгновенной скорости изменения), имеют под собой некую интуитивную основу в физических явлениях. Но хотя производная и связана с физическим понятием скорости, ее в гораздо большей степени можно рассматривать как конструкцию, созданную разумом, причем на качественно совершенно ином уровне, нежели, скажем, понятие математического треугольника.

На протяжении всей истории математики новые понятия поначалу вызывали весьма настороженное отношение. Даже понятие отрицательного числа сначала было отвергнуто серьезными математиками. Тем не менее каждое новое понятие, хотя и неохотно, принималось после того, как становилась очевидной его полезность в приложениях.

Вторая существенная особенность математики — ее абстрактность. Платон в диалоге «Государство» так сказал о геометрах:


Но ведь когда они вдобавок пользуются чертежами и делают отсюда выводы, их мысль обращена не на чертеж, а на те фигуры, подобием которых он служит. Выводы свои они делают только для четырехугольника самого по себе и его диагонали, а не для той диагонали, которую они начертили. Так и во всем остальном. То же самое относится и к произведениям ваяния и живописи: от них может падать тень, и возможны их отражения в воде, но сами они служат лишь образным выражением того, что можно видеть не иначе, как мысленным взором.
([2], с. 318-319.)


Если математика должна быть могучей, то в одном абстрактном понятии она должна охватывать существенные особенности всех физических проявлений этого понятия. Например, математическая прямая должна включать в себя все наиболее значительные особенности туго натянутых веревок, краев линеек, границ полей и траекторий световых лучей.

В том, что математические понятия представляют собой абстракции, нетрудно убедиться на примере наиболее элементарного понятия — числа. Непонимание абстрактного характера этого понятия может приводить к недоразумениям. Поясним эту мысль на простом примере. Человек заходит в обувной магазин и покупает три пары обуви по 20 долл. за пару. Продавец говорит, что три пары обуви по 20 долл. за пару стоят 60 долл. и ожидает, что покупатель уплатит ему эту сумму. Покупатель же возражает, утверждая, что три пары по 20 долл. за пару — это 60 пар обуви, и настаивает, чтобы продавец приготовил 60 пар обуви. Прав ли покупатель? Прав, как прав и продавец. Если число пар обуви, умноженное на доллары, может давать доллары, то почему бы тому же произведению не давать пары обуви? Ответ, разумеется, состоит в том, что мы не умножаем туфли на доллары. Мы абстрагируем числа 3 и 20 из физической ситуации, умножаем одно число на другое, получаем число 60 и интерпретируем результат в соответствии с физической ситуацией.