— Слушаю, — раздался в трубке голос Игоря Васильевича.
— Получилось, — одним выдохом сказал Неменов.
— Но какой?! — в голосе нетерпение.
— Сильный, — заверил Неменов.
— Вы только прекратите пока, а то я неувижу. Подождите меня!..
Без двадцати четыре утра появляется Курчатов. Возбужденный от быстрой ходьбы, даже борода распушилась, в глазах радость. Потирая руки, говорит:
— Славно, славно сработали, ребята! Включайте, посмотрим...
Циклотрон был запущен, пучок дейтонов получен. Неменов и его товарищи действовали уже так, будто годы работали на этом ускорителе. Игорь Васильевич, увидев своими глазами, что пучок есть, и сильный, весь засветился радостью.
— Поздравляю, поздравляю, — подходил он к каждому, жал руку, обнимал.
Потом всей компанией отправились к нему домой — он жил в двух комнатах в новом здании.
— Там у меня припасена бутылка шампанского, я словно чувствовал, что сегодня вы сделаете подарочек, — говорил он. И с его лица не сходила радостная улыбка.
Утром у циклотрона снова собрались те, кто его создавал. Курчатов поставил перед ними предельно ясную задачу: циклотрон включить на круглосуточную работу. Дежурить у него посменно. Его, И. В. Курчатова, включить в график дежурств рядовым оператором. Цель — облучением азотнокислой соли урана получить возможно большее количество трансурановых элементов в ядерных реакциях. Облучение велось так: пучок дейтонов ударял в либиевую мишень, та, в свою очередь, испускала нейтроны, которые замедлялись в парафине и вступали во взаимодействие с ядрами урана, образуя новые элементы.
Что это за элементы и почему Игорь Васильевич делал такой упор на них? Ни в одном справочнике до войны вы их не нашли бы. Это новые элементы. Они получаются в результате захвата нейтрона ядром урана-238.
И начались бомбардировки пучком быстрых дейтонов лития, а нейтронами — солей урана, окруженных парафином. Эта беззвучная стрельба нейтронами по ядрам урана вплеталась в победную канонаду на фронте. Сохранился журнал дежурств на циклотроне 1944 года. Среди имен других сотрудников стоит имя И. Курчатова. Есть и роспись за дежурство с росчерком от «В» до «И».
Нужное количество элементов было получено. Игорь Васильевич мобилизовал химиков, физиков высшей квалификации. Результаты не заставали себя ждать. Подтвердились самые оптимистичные предположения: реакция давала элемент, имеющий массовое число 239, — радиоактивный, испускающий при распаде альфа-частицы. В дальнейшем ученые узнают его имя — плутоний, определят период его полураспада (24 360 лет), более чем достаточный для производства и накопления запасов. Но самое главное узнают, что ядра плутония делятся под действием нейтронов любых энергий так же, как и ядра урана-235.
Значит, если осуществить цепную реакцию в природном уране с замедлителем, то уран-238, не принимающий участия в этой реакции, будет поглощать часть нейтронов и из него получится делящееся вещество — плутоний. Накопив и выделив это вещество, можно будет осуществлять с помощью него любые реакции — и управляемые и взрывного типа. Вот каким исследованиям и положил начало московский первенец — циклотрон!
Высокой оценкой успехов И. В. Курчатова партией и правительством было награждение его 18 ноября 1944 года орденом Ленина.
Реактор пошел!
Главное направление
Как образно выразился один ученый, чем бы в первые военные годы Игорь Васильевич ни занимался, мысленно он непрерывно шел по следу управляемой ядерной реакции.
Результатом большой работы Курчатова явилось не только четкое определение всех возможных путей получения атомной энергии, но и выбор главного направления, которое раньше других приведет к цели. Этим главным направлением стала уран-графитовая система. Вывод о возможности цепной реакции в уран-графитовой системе был новым фундаментальным вкладом И. В. Курчатова в советскую атомную науку.
Насколько важно было для быстрейшего овладения атомной энергией сделать этот очень смелый и прозорливый вывод, можно подтвердить практикой немецких ученых. Как стало впоследствии известно, в обстановке лихорадочной подготовки к войне заправилы фашистской Германии проявляли большой интерес к созданию атомной бомбы. В апреле 1939 года на секретном совещании ряда ведущих физиков-атомников — Иосса, Ханле, Гейгера, Маттауха, Бете и Гофмана, было создано урановое объединение, взявшее в свои руки все исследовательские работы по использованию атомной энергии в военных целях. Это объединение возглавил крупнейший германский физик Гейзенберг. В его распоряжение было предоставлено некоторое количество урана.
В том же году в Германии был основан второй центр по созданию атомного оружия под руководством профессора Шумана, а вскоре и третий — во главе с известным инженером-физиком Манфредом фон Арденне. В июне 1942 года фашистские главари, видимо недовольные слабыми темпами работ, объединили все исследовательские силы под руководством Геринга. Но фашистам так и не удалось создать новое оружие.
Теперь мы уже знаем, что физиков Германии постигла неудача именно на первом этапе, при выборе главного направления. Произведенные ими измерения характера поглощения нейтронов графитом привели к ошибочному выводу, что углерод вообще нельзя использовать в качестве замедлителя в реакторе на естественном уране. Поэтому они с самого начала отказались от попыток построить уран-графитовый реактор.
Германские физики сделали главную ставку на использование в качестве замедлителя тяжелой воды. В самой Германии она не производилась. Попытка завладеть запасом тяжелой воды, которым располагала лаборатория Жолио-Кюри, провалилась, так как патриоты Франции вовремя вывезли ее из Парижа сначала в Клермон-Ферран, потом в Бордо и Лондон. Фашисты протягивали свою лапу и к норвежской тяжелой воде. Но союзники организовали взрыв на предприятии и сорвали дальнейшее производство. Когда гитлеровцы решили вывезти запасы тяжелой воды по озеру, паром был подорван и пошел ко дну со своим ценным грузом.
Просчет в отношении графита и провал попыток овладеть запасами тяжелой воды задержали ход работ физиков фашистской Германии в области атомной энергии, хотя надо подчеркнуть, что недостаточная экономическая и техническая мощь Германии того времени все равно не позволила бы ей наладить массовое производство атомного оружия.
Советские ученые, и в первую очередь Игорь Васильевич, держали твердый курс на использование в первом реакторе в качестве топлива природного урана (обогащенным ураном мы тогда не располагали), а замедлителя — графита.
Осуществлению цепной реакции предшествовала экспериментальная и теоретическая работа по дальнейшему исследованию процессов деления и измерения нейтронно-ядерных констант. Работа проводилась под руководством и с участием И. В. Курчатова. Это было направление, которое лично и непосредственно возглавил Игорь Васильевич.
Как вы делаете алмазы?
Вернемся немного назад, к июлю 1943 года, в Пыжевский переулок. И. С. Панасюк вспоминает, что уже тогда Игорь Васильевич четко определил ему аадачу: работать над уран-графитовой системой. Он показал свой расчет: реакция пойдет при сечении захвата нейтронов ядрами графита около 4*10^-27 см^2. Курчатов тогда добавил, что он считает такое сечение реальным.
— Но такое сечение захвата будет только у самого чистого графита. Любая примесь ухудшает дело.
Через несколько дней Курчатов и Панасюк были уже на заводе, делающем графитовые электроды для производства алюминия. Познакомились с технологией, захватили с собой несколько образцов.
В подвале дома в Пыжевском переулке соорудили установку для измерения сечения захвата графитом нейтронов. По заданию Игоря Васильевича видные ученые Ю. Я. Померанчук и И. М. Гуревич разработали метод наиболее точного измерения сечения захвата. Регистрация медленных нейтронов осуществлялась с помощью ионизационной камеры, наполненной не инертным газом, как обычно, а соединением бора с фтором, называемого «бор-фтор-три». Так ее и именовали в обиходе; борная камера. Как только в эту камеру попадал медленный нейтрон, ядро бора взаимодействовало с ним, и в результате испускалась альфа-частица, которая инонизировала газ. Электрический импульс усиливался радиосхемой. Эта камера в сочетании с источником нейтронов позволяла измерять сечение захвата графита любой марки.
В процессе работы над этой камерой произошло первое знакомство Игоря Васильевича с Алексеем Кузьмичом Кондратьевым, которому шел тогда... четырнадцатый год. Мальчишка бегал по лаборатории, подносил то одну, то другую деталь, помогал во всем старшим. Игорь Васильевич, заметив его серьезность и деловитость, заулыбался.
— Ну давай знакомиться, — протянул он руку.
Тот представился, как взрослый, даже голос звучал басовито:
— Алексей Кузьмич Кондратьев.
— Значит, Кузьмич... Ну хорошо, работай.
С тех пор с легкой руки Курчатова, так и называли его — Кузьмичом.
В лабораторию его привела работница из хозотдела — очень уж смышленый, говорит, мальчонка, да и семья нуждается сильно. К чему готовить парня, в лаборатории не знали. Когда доложили Игорю Васильевичу, тот сказал:
— Пусть будет пока на подхвате, а там увидим. Мальчик старался изо всех сил. Они впрямь был очень сообразительным, хорошо помогал специалистам, а потом и сам стал лаборантом.
Как-то Курчатов, будучи в Центральном Комитете партии, рассказал о юном работнике института. С тех пор как только он появлялся в ЦК, его обязательно спрашивали:
— Ну, как поживает Кузьмич?
— Кузьмич растет, как и наше дело, — отвечал обычно Курчатов.
...Первые же замеры показали, что сечение захвата нейтронов в десять раз больше допустимого. Расстроенный Панасюк повторил измерения. Но приборы подтвердили прежний результат.
— Эти образцы относятся к нейтронам, как голодные волки к ягнятам, — резюмировал он свой доклад Курчатову.
Но Игорь Васильевич (разговор шел в его кабинете) не был удивлен, он ждал такого результата — ведь никакой специальной обработки этот графит не проходил.
На одном из заводов обнаружили довольно чистый графит.
Но измерения показали, что и новая порция графита для реактора не подходит. Слишком жадно захватываются нейтроны. Примеси действовали губительно.
Игорь Васильевич собрал специалистов. Решили больше не полагаться на удачу в поисках готового продукта, а заказать его промышленности.
Дать чистый графит с ходу заводы, конечно, не могли. Надо было прежде технически и технологически перестроить производство. Нужны были опытные в этом деле люди. И такие люди нашлись: Владимир Владимирович Гончаров и Николай Федотович Правдюк.
Владимир Владимирович, или Веве, как его по инициалам дружески называл Игорь Васильевич, работал в институте почти с самого его основания. Правдюка Игорь Васильевич знал хорошо по Крымскому университету и работе в Баку, а потом в Москве, и привлек как специалиста по электрометаллургии, ученика академика А. А. Вайкова. Разыскал же Правдюка он с помощью... радиовещания.
Как-то по радио передавался указ о награждении орденами работников танковой промышленности. В числе награжденных был Правдюк Николай Федотович. Срочно был найден адрес, и ему полетела приветственная телеграмма от друга юности. А потом Курчатов явился к Правдюку домой. Правда, хозяина не застал, но попросил передать, чтобы он непременно приехал к нему.
При встрече Игорь Васильевич спросил Николая Федотовича, не пошел бы он к нему помогать в трудном деле, близком к его специальности.
— Я бы рад, — отметил Правдюк. — Но меня не отпустят — ведь война не кончилась.
— И у нас фронт, и у нас битва.
Договорились, что Игорь Васильевич начнет хлопотать...
Под непосредственным руководством Курчатова были разработаны требования к реакторному графиту, который должна дать промышленность. И очень жесткие для производства. Достаточно сказать, что примесь бора не должна была превышать миллионных долей, а редких земель — должно было быть еще меньше.
...На заводе старались удовлетворить требования института за счет выбора самого чистого сырья. Курчатов и Гончаров часто ездили на завод, помогали производственникам. Вскоре подключился к этой работе и Н. Ф. Правдюк. Почти каждый день он докладывал о делах Игорю Васильевичу. Тот выслушивал, уточнял, советовал, записывал в свою книгу то, что он решил предпринять.
В одну из таких бесед Николай Федотович рассказал об обсуждении требования института к чистоте графита в дирекции завода. Директор жаловался: «Ваши требования многие встречают в штыки. А мы им ничем возразить не можем, сами не понимаем, для чего вам такая дьявольская чистота графита?»
— Ну что я мог ответить? — улыбается Правдюк. Курчатов, поглаживая бороду, соглашается:
— Безусловно, звонить в колокола мы не можем.
— На этой почве, — продолжает Правдюк, — произошла даже курьезная история. Ко мне на заводе подошел инженер. «Я, — говорит, — понимаю важность жестких требований. Но скажите, каким методом вы делаете алмазы? Я всю литературу перечитал. Как высоздаете давлениеикаковвыход продукции?»
Игорь Васильевич от души посмеялся — действительно, неожиданный вывод — алмазы!..
И все же, когда стали испытывать графит, то обнаружился брак. Была введена новая технология, хотя и усложнившая производство, но от нее ждали чистого продукта. На заводе создали специальную лабораторию. Один из лучших советских специалистов по графиту возглавил заводские испытания. Графит пошел лучшего качества.
Наконец физические испытания института тоже подтвердили, что партия графита, полученная с завода, имеет сечение захвата, не выходящее за пределы контрольной цифры, данной Игорем Васильевичем. Курчатов вздохнул облегченно. Но темпов, предупредил он, не ослаблять, наоборот, повышать их — ведь графита только для первого реактора нужно сотни тонн. Да и физические испытания в институте надо вести более широким фронтом, чтобы ни один графитовый кирпич не миновал их.
Измерения проводились в двух «госпитальных» палатках, развернутых прямо напротив здания института. Часто сюда приходил Игорь Васильевич, сам садился за установку, выполнял измерения час, другой, третий...
Уран
Если по теоретическим расчетам графита требовалось сотни тонн, то урана несколько меньше — до 50 тонн. Но проблема обеспечения реактора ураном была ничуть не более легкой.
Тут цепь предприятий, от которых зависело получение продукта высокой чистоты, была еще длиннее. Она начиналась с рудника, где добывалась урановая руда, проходила через обогатительные фабрики и заводы металлического урана. Процесс производства урана осложнялся тем, что требовалась аппаратура, изготовленная из специальных материалов. При этом должна была соблюдаться очень точная дозировка реагентов и строжайше поддерживаться необходимая температура. Получение металлического урана невозможно без большого количества исключительно чистых реактивов.
Еще одна сложность. После переработки сотен тони урановых концентратов, поступающих с обогатительных фабрик, надо получить исключительно чистый уран, содержание отдельных примесей в котором не должно превышать миллионных долей. Особенно нетерпимы и здесь бор, кадмий, индий, редкие земли.
Как только был получен уран в виде порошка, окиси и металлических слитков, начались интенсивные измерения его физических характеристик. Источники нейтронов помещали для этого в графитовую призму и водяной бак. Применялись как бы две нейтроновые пушки. Они и «стреляли» по образцам урана и графита.
Теоретически было ясно, что осуществить цепную ядерную реакцию вполне возможно. Но практически нейтроны могут захватываться ядрами без деления или просто вылететь за пределы реактора. Надо было получить как можно больше сведений о механизме возникновения вторичных нейтронов, о сечениях реакции их взаимодействия с ураном и замедлителем, причем данные нужны были в широком диапазоне энергий, начиная от той, которую нейтроны имеют в момент деления ядер, и кончая энергией обычного теплового движения частиц.
Еще никогда в распоряжении Игоря Васильевича, так близко в идеях подходившего к получению атомной энергии, не было металлического урана — прямого источника этой энергии. Когда была получена первая партия, он вызвал сотрудников, ответственных за этот участок работы, и показал на запакованное богатство:
— Знакомьтесь: уран.
Знакомиться с ураном действительно нужно было основательно. Ведь малейшее незнание грозило опасностью. Это подтвердил такой случай.
Один из лаборантов, В. К. Лосев, измерял в палатке вторичные нейтроны, как вдруг увидел оранжевое пламя. Огонь моментально перекинулся на палатку, она загорелась. Все присутствовавшие уже боролись с пламенем. Одним из первых прибежал к палатке Курчатов.
— Водой не заливать, — властно командовал он, — засыпать песком...
Палатку спасти не удалось — сгорела дотла. Все остальное — а оно-то и представляло ценность — удалось отстоять. Комиссия из виднейших специалистов стала разбираться: кто же виноват? Оказалось: незнание. Это теперь в каждом учебнике можно прочесть: «Порошкообразный металлический уран легко возгорается и при распылении в воздухе горит ярким пламенем». А тогда ведь никто этого предвидеть не мог.
Заводы стали присылать уран регулярнее, хотя еще и небольшими партиями. И его тоже немедленно проверяли, насколько он чист. Теперь эти измерения, как и физическое испытание графита, производились в огромном помещении, названном СК — склад котла (реактора).
Одновременно по заданию Игоря Васильевича начались проектирование и подготовка к постройке здания для первого реактора.
— Для циклотронов дома строил, для реакторов — никогда, — смущенно говорил архитектор А.Ф. Жигулев, после того как Курчатов поручил ему спроектировать это необычное здание.
Скоро на территории института стало расти серое кирпичное здание. А под землей возникали таинственные ходы сообщений.
Уран проверяли в условиях, все более близких к его реальному назначению в реакторе. С самого начала ученые во главе с Игорем Васильевичем четко определили, что уран и графит не надо перемешивать. Было предложено применить решетку, состоящую из замедлителя с периодически вкрапленными в него кусками (блоками) урана.
Почему было принято такое решение? Дело в том, что в однородной смеси больше вероятности резонансного захвата нейтронов ураном-238 без деления. В случае же решетки нейтроны, проходя большой путь в графите, замедляются ниже резонансной области энергии и вероятность захвата без деления их в уране-238 существенно уменьшается. Ученые установили это еще до постройки самого реактора.
Чтобы проверить получаемый уран в условиях, наиболее близких к реальным, делали в графитовых кирпичах отверстия для блоков урана и из этих кирпичей с блоками складывали призмы. Под руководством И. В. Курчатова группа
И. С. Панасюка меняла сотни вариантов решеток, собирала призмы с поглотителем нейтронов. И каждый раз измерялись нейтронные потоки, делались расчеты. И после многодневной утомительнейшей работы Панасюк убедился, что чистота урана... недостаточна! Надо же было случиться такому! Казалось, уже все отлажено. Ученые забили тревогу.
Виднейшие химики во главе с академиком А. П. Виноградовым определили характер вредных примесей — редкие земли. Работники урановых предприятий сделали все от них зависящее, чтобы дать более чистый продукт. И дали!
Четыре сферы
Истекали последние подготовительные месяцы. По инициативе Игоря Васильевича было решено сложить весь полученный для реактора графит и померить его сечение захвата нейтронов, так сказать, в полностью собранном виде. А вдруг оно превысит контрольную цифру, горевшую, как огонек, в памяти у всех? Не «подставит ли графит ножку» на последней финишной прямой?
Сложили графит в огромный куб — по виду готовый реактор, только без урана внутри. Каким оно будет, суммарное эффективное сечение захвата нейтронов графита? Игорь Васильевич был тут же — хотел сам подвести итог многочисленным измерениям по партиям (всего было проведено 100 измерений порциями по 5 тонн каждая). Мерили на этот раз несколько дней и ночей. Настала минута подсчета. Игорь Васильевич орудует логарифмической линейкой. И все видят, как он поднимает руку и говорит:
— Есть!
Понятно без слов. Сечение в норме. Выражаясь точнее, оно составляет 3,7*10^-27 см^2, то есть очень близко к тому ориентиру, которого держался коллектив. Весь графит, полученный с предприятий страны, был годен для реактора.
Годен! Это слово звучало как музыка для Игоря Васильевича. Половина дела сделана. Скоро обещали доставить последние порции урана. Здание для котла готово, можно будет начинать кладку. Дела пока шли, как он любил выражаться, на большой палец!
...Предполагалось, что построенный реактор будет существовать недолго — его разберут и отправят на объект для промышленного производства плутония. Чтобы не делать особых затрат на защиту, решено было углубить его в землю. Для этого под зданием реактора был подготовлен бетонированный котлован шириной, длиной и высотой в 10 метров. Там и развернулась непосредственная подготовка к постройке реактора. Курчатов предложил строить последовательно модели реактора. Были возведены Сфера-1, Сфера-2, Сфера-3, Сфера-4. Когда была готова первая, внутри нее измеряли плотность нейтронов, возникающих в результате самопроизвольного деления ядер урана. На специально приготовленном графике Игорь Васильевич нанес первую точку будущей кривой предсказания, при какой загрузке ураном и графитом реакция «пойдет».
— А теперь разрушать? — спросил Кузьмич. Ему было явно жалко сферу, построенную общими усилиями.
— Разрушать, чтобы созидать новую, Кузьмич, — ответил Курчатов и первым снял верхний кирпич графита.
Вторая сфера содержала уже примерно втрое больше графита и урана. Это было весьма солидное сооружение. И хотя никто из сотрудников практически не объединял в единую систему такое количество урана, они спокойно возводили сферу без каких-либо устройств для остановки реакции. Так велика была уверенность в точности теоретического расчета.
Доложили о готовности второй сферы Игорю Васильевичу. Стандартный источник, борная камера, золотые индикаторы — все было готово для контрольных измерений. Игорь Васильевич присутствовал при тщательнейших испытаниях этой сферы и опять своей рукой нанес точку на будущем графике. Чтобы нанести эту маленькую точку, потребовался многодневный труд.
Третья сфера строилась снова без стоп-стержней. Так назвали здесь стержни, способные сказать «стоп!» ядерной реакции. В ней еще прибавилось графита и урана. Третья точка на графике сместилась ниже. Из трех точек уже угадывался ход кривой, кажется, можно было экстраполировать... Но Игорь Васильевич решает: делаем еще одну сферу, последнюю. На этот раз надо применить стоп-стержни. Безопасность прежде всего!
И вот новое сферическое сооружение в огромном котловане под зданием реактора готово. Количество графита и урана возросло более чем вдвое.
Последняя точка легла на график, Пунктир, проведенный рукой Игоря Васильевича, уперся в горизонтальную ось. Отрезок этой оси от нуля до точки встречи с пунктиром показал, при какой загрузке данного урана при данном замедлителе возможен критический режим. Кроме этого главного, определяющего итога, метод моделей дал навык в сборке, позволил рассортировать урановые блоки. Уран получше решено было размещать поближе к центру, уран похуже — у периферии. Все этапы предварительной подготовки к сборке самого реактора фотографировались. Это была инициатива Игоря Васильевича:
— Для истории надо, для истории, — говорил он.
Но на предложения сфотографироваться для истории самому отвечал:
— Некогда, некогда сейчас, как-нибудь потом... Это «потом» так и не наступило...
А забот все прибывало. На первом плане у него, как всегда, люди. Курчатов не устает предупреждать:
— Думайте о приборах контроля. Не будет техники безопасности, будете больными на всю жизнь...
Панасюк с Б. Г. Дубовским изучили все, что применялось в целях защиты в рентгенологии. Оказалось, не годятся те приборы. Ведь в излучении реактора будут не только гамма-кванты, но и нейтроны. Пришлось конструировать самим первый в стране дозиметр. Он потом был выпущен промышленностью под маркой ДИГД (дозиметр интегрирующий).
Хорошую службу сослужил он, как и другие приборы. Меры предосторожности были приняты своевременно. Ни одного аварийного облучения не допустили.
Симфония пуска
Наступил торжественный момент сборки реактора.
— Начнем с кладки отражателя, — этими простыми словами начался исторический эксперимент.
Отражатель нейтронов выкладывали из того же графита. Он не должен был выпускать нейтроны наружу, его задача — направлять их обратно в «пекло» реакции. Толщина отражателя 0,8 метра. Собрали этот первый слой на полу.
— Приступаем к активной зоне, — опять простые слова, впервые прозвучавшие не только в нашей стране, но и во всей Европе.
В активной зоне, если все будет хорошо, скоро пойдет управляемая реакция.
На улице лютует декабрьская стужа, а здесь тепло, даже жарко. Люди, увлеченные работой, не замечают времени. Почти неотлучно здесь Игорь Васильевич.
Задолго до начала кладки Игорь Васильевич и его сотрудники экспериментально убедились, что при делении ядер не все нейтроны вылетают мгновенно, часть их запаздывает. Еще в 1940 году Курчатов говорил об этом на совещании по ядру. Теперь запаздывающие нейтроны были взяты за основу управления реакцией. Уже лежали подготовленные для опускания в активную зону регулирующие и стоп-стержни из кадмия, заключенного в алюминиевые трубки. При кладке активной зоны для этих стержней оставили вертикальные, а для проведения измерений и будущих исследований — горизонтальные каналы.
Когда были положены первые слои, установили стержни для регулирования и остановки реакции. Счетчики нейтронов поместили в активную зону и присоединили к приборам. Параллельно от усилителя протянули провода к громкоговорителю. Он отмечал появление нейтронов щелчками. Только щелчки раздавались пока хаотически и не часто. Попробовали при наличии лишь первых слоев поднять стержни. Но число щелчков не возросло. Некоторых это привело в уныние. Игорь Васильевич оставался невозмутимым, лишь пощипывал бороду.
— Продолжим кладку.
Потом опять проба. Громкоговоритель опять не реагирует. Так продолжалось 23 и 24 декабря 1946 года. К вечеру последнего дня уран-графитовая сфера была близка к завершению. Игорь Васильевич для контроля еще раз нажал кнопку подъема стержней. Присутствующие затаили дыхание. Дробь в громкоговорителе стала заметно быстрее, репродуктор заговорил скороговоркой пулемета.
— Ожил реактор. Остался один слой. Продолжим кладку. Когда положили, считая с фундаментом и отражателем, 62-й слой графитовых кирпичей, Игорь Васильевич с большими предосторожностями стал поднимать кадмиевые стержни.
В громкоговорителе — дробь. Замигали неоновые сигнальные лампы. Игорь Васильевич решает еще выше поднять стержень, потом еще и еще. И с каждым разом все нарастает дробь громкоговорителя, световые вспышки сливаются в алое сияние.
И наконец, сплошной гул. Бушует атомное пламя. Игорь Васильевич бросился поздравлять товарищей. Грянуло приглушенное подземельем «ура».
Это было в 6 часов вечера 25 декабря 1946 года. Впервые на континенте Европы пошел атомный реактор. Ученые чувствовали, что у них в руках атомная энергия. Больше не стали задерживаться. Надо было отдохнуть. За четверо суток бессонной, тяжелой работы они устали и только сейчас почувствовали это.
— Ну пойдемте, теперь поработаем над собой, — сказал Курчатов, намекая на то, что можно и поспать.
Вот имена тех, кто был в тот момент рядом с Игорем Васильевичем: И. С. Панасюк, Кузьмич — А. К. Кондратьев, Б. Г. Дубовский, Е. Н. Бабулевич...
...Игорь Васильевич шагал по запорошенной снегом дорожке от здания реактора и, не отворачиваясь от сильного ветра, упруго бившего в лицо, думал о том, что вот и завершились сегодня многолетние поиски заветной цели. Пришли на ум слова Ивана Михайловича Губкина, сказанные им в 1937 году: овладеем внутриядерной энергией. Как давно это было, почти десять лет прошло, и каких лет!
И тут вдруг по какой-то непонятной связи в памяти возник веселый вечер отдыха в физтехе, еще до войны. Каждому сотруднику Абрам Федорович Иоффе дарил шутливый символический подарок, и это сопровождалось взрывами смеха и аплодисментами. Вызвали Игоря Васильевича. Абрам Федорович приготовил ему воздушный шарик на ниточке с надписью \' «Ядро атома». В зале понимающе заулыбались. Но только было Игорь Васильевич хотел схватить ниточку, Абрам Федорович отпустил шарик. Игорь Васильевич машинально сделал движение достать ниточку. Но где там! Шарик улетал от него неудержимо. Шутка имела успех...
«А теперь-то я шарик зацепил», — думал Курчатов, входя в свой домик, который ему специально построили на территории института. Предлагали дом в городе, он не захотел. Лучше здесь, ближе к производству. Дома, как и в добрые старые времена, его уже ждали Марина Дмитриевна и Борис Васильевич.
— Реактор пошел, — радостно сообщил он Борису Васильевичу.
Надо сказать, что Борису Васильевичу также немало пришлось потрудиться для успеха этого дела. В лаборатории Бориса Васильевича проводились химические анализы по исследованию графита на всех этапах подготовки реактора к пуску, сотрудники его лаборатории участвовали в выработке условий производства графита и урана промышленностью.
...В Новый год у Курчатова был большой праздник. Приехали министры, ученые. Поднимая бокал шампанского, министр под гул одобрения поздравил Игоря Васильевича с успехом..
Несколько дней Игорь Васильевич и его сотрудники изучали, как лучше управлять реактором, выясняли его свойства. Реактор имел надкритичность, то есть превышение над критическим режимом, всего 0,0007. Работа его была совершенно безопасной. Мощность возрастала сравнительно медленно. На ее удвоение, например, требовалось несколько минут. Аппаратуру управления реактором разрабатывали и изготовляли прямо здесь же, в мастерских института, и она действовала тоже безотказно.
В реакторе не была предусмотрена система непрерывного отвода тепла, и при больших мощностях наблюдалось неожиданное для специалистов явление саморегулирования. Даже при вынутых кадмиевых стержнях мощность реактора росла лишь до некоторого предела, а затем начинала падать. Сказывалось нагревание урана и графита, влиявшее на выход нейтронов.
Вопреки ожиданиям построенный реактор не пришлось разбирать: его оставили в распоряжении института. Решено было использовать его прежде всего для получения трансурановых элементов, и в первую очередь плутония, для дальнейшего, -более детального их изучения. Чтобы получить как можно больше плутония, надо было обеспечить большой интегральный поток нейтронов, то есть «гонять» реактор на высоких мощностях.
При включении на большую мощность как-то часов около десяти вечера они разогнали реактор больше, чем положено. Игорь Васильевич загорелся: давайте еще поднимем. Дубовский в это время измерял интенсивность излучений. Вдруг он прибежал.
— Игорь Васильевич, там до вашего домика излучение доходит. Да и здесь выше нормы.Может, хватит разгонять?
Игорь Васильевич тотчас согласился:
— Будем заканчивать.Впредь на большую мощность пускать только на расстоянии.
И тут же перешел на шутливый тон:
— Николай Федотович, вы зря сидите на полу, там радиация больше. Сядьте на стул...
— И вы поднимитесь, — потребовали товарищи.
— Я длиннее вас, меня не достает...
Конечно, без защиты людям находиться вблизи работающего на большой мощности реактора было нельзя. Поэтому срочно протянули километровую линию к главному зданию и здесь установили дистанционный пульт управления. Отсюда реактор и включали. Нужное количество плутония вскоре было получено.
Одновременно проводились опыты по действию излучения реактора на животных. Кролики и собаки и здесь жертвовали своей жизнью ради науки. Биологические исследования позволили создать надежную защиту реактора...
Располагая теперь небывалым по мощности и спектру источником нейтронов, наши ученые широко развернули исследования, которые помогли организовать надежный контроль за чистотой и качеством материалов для реакторов второго поколения.
Теперь был окончательно выяснен механизм цепного процесса, уточнены ядерные характеристики делящихся веществ. Проектирование и постройка последующих реакторов получили солидную основу и развивались высокими темпами.
Советское правительство менее чем через год после пуска первого реактора заявило о том, что секрета атомной бомбы уже не существует. Это заявление означало, что Советский Союз открыл секрет атомного оружия, хотя научные круги США считали, что мы не сможем овладеть им раньше 1952 года.
Первая молния
И теоретик и строитель...
«И. В. Курчатов был глубоко убежден, — рассказывает академик И. К. Кикоин, — что создание новейшей техники и первые этапы ее развития должны проходить под руководством ученых, причем руководство он понимал в самом широком смысле слова, включая в это понятие не только высказывание идей, но и предоставление ученым достаточно прав». Так понимал Курчатов взаимодействие науки и производства при решении крупнейших научно-технических вопросов современности. Он сам непосредственно возглавлял строительство промышленных уран-графитовых реакторов для производства плутония и всего комплекса производства, необходимых для его отделения от масс облученного урана.
На время строительства атомных объектов, которыми руководил Курчатов, его рабочее место переносилось на стройку, где он вникал во все детали строительства и монтажа.
Очень показательно, что ломка привычных форм работы была осуществлена им решительно, без каких-либо колебаний.
«В памяти людей, участвовавших в развитии атомной науки и техники, особенно ярким и дорогим останется ее весенний период, когда закладывались самые основы отечественной атомной техники, — говорит член-корреспондент Академии наук Д. И. Блохинцев. — В этот период возникли не только основные идеи, но и, что не менее важно, возник и стиль работы советских инженеров и ученых-атомников, который по полному праву следует назвать Курчатовским...»
Именно черты этого стиля проявились при создании производства делящихся веществ. Тонко подметил Александр Павлович Виноградов: новое в этом деле начиналось гораздо раньше, чем строители приступили к возведению невиданного сооружения. В самом деле, ведь проектирование мощных реакторов осуществлялось впервые — тут и физические, и биологические, и технологические, и строительные особенности переплетались в такой узел, разрубить который было под силу только тому, у кого эрудиция ученого-теоретика сочеталась со смелостью новатора-практика.
Постройкой мощного реактора процесс получения плутония не кончается, а лишь начинается. В урановых стержнях в процессе реакции образуется некоторое количество плутония. Но, кроме плутония, в стержнях остаются другие продукты деления ядер, обладающие огромной радиоактивностью. Значит, изъятые из атомного реактора стержни чрезвычайно опасны. Для их извлечения, транспортировки и последующей обработки нужны специальные приборы и устройства.
А затем? Затем труднейший химический процесс отделения плутония от облученного урана. Целое производство, завод, выпускающий плутоний. При этом в ходе производства предстоит иметь дело с радиоактивными материалами — значит, встает проблема защиты людей. И не только людей, но и оборудования — в условиях радиоактивности ускоряется коррозия, образуются перекиси в водных растворах, нагреваются растворы, что затрудняет контроль за температурой в химических процессах.
Работы по сооружению первого мощного промышленного реактора, предназначенного для производства плутония в больших масштабах, шли успешно. Все выше поднималось здание оригинальной конструкции. После его постройки приступили к сооружению самого реактора. Объем работы был, конечно, значительнее, чем при создании первого реактора. Усложнилась конструкция активной зоны, была введена водяная система непрерывного охлаждения, устроена мощная защита, разветвленный контроль излучений, автоматика регулирования и остановки реакции и многое другое, без чего промышленный реактор не мог бы дать ядерного горючего.
Не всегда и не все шло гладко, как это вообще бывает в новом деле.
Научному руководителю приходилось нередко показывать личный пример в трудную минуту. Как-то возникла потребность пройти в радиоактивную зону. Защита была обеспечена, но рабочие что-то медлили, видимо, все-таки боялись радиации, о которой наслушались всяких страхов. Первым в зону пошел Игорь Васильевич.
Вскоре первый промышленный реактор был пущен, в его стержнях стал накапливаться плутоний. Выделение плутония в промышленных масштабах — задача очень трудная. Была разработана технология этого процесса: облученные стержни предстояло растворять в азотной кислоте, потом из раствора сначала извлекать уран, а за ним плутоний.
Расчеты ученых вскоре воплотились в производственные предприятия, и в нашей стране началось промышленное получение плутония...
Начало производства делящихся веществ имело историческое значение для нашей страны, для создания советского атомного оружия. Зарубежные специалисты утверждали, что Советский Союз, ослабленный войной, долго не сможет изготовить атомную бомбу. Они просчитались. А таких предсказателей было немало. В 1945 году в США состоялось совещание виднейших американских ученых-атомников с участием Э. Ферми, Р. Оппенгеймера, Э. Лоуренса, А. Комптона, на котором решался один вопрос: когда СССР сможет создать атомную бомбу? Они дали ответ: скорее всего через 10 лет. Генерал Гровс заявил в конгрессе, что в лучшем случае Советам для этой цели потребуется 15 — 20 лет.
Центральное разведывательное управление США летом 1949 года считало, что взрыв первой советской атомной бомбы произойдет не раньше зимы 1951 — 1952 года.
В сентябре 1949 года самолеты американских военно-воздушных сил доставили пробы воздуха, взятого на большой высоте. Предварительный анализ этих проб воздуха показал, что уровень радиоактивности в нем выше обычного. Пробу этого воздуха спешно направили в радиохимическую лабораторию. Вскоре результаты анализа показали, что в пробе содержатся осколки ядер плутония. Не было никаких сомнений — Советы произвели ядерный взрыв!
Президент Трумэн 23 сентября 1949 года заявил: «У нас есть доказательства, что недавно в СССР произведен атомный взрыв». С аналогичными заявлениями выступили английское и канадское правительства.
Сообщение ТАСС от 25 сентября 1949 года еще раз обратило внимание встревоженных господ из-за океана на заявление 1947 года о том, что Советский Союз уже открыл секрет атомной бомбы. И надо было верить реальным фактам, а не исходить из несостоятельных расчетов на длительное отставание СССР от США в производстве атомной энергии.
Как ни горька была пилюля, но агрессивным кругам Запада пришлось ее проглотить.
Действительно, над одним из советских полигонов осенью 1949 года был осуществлен атомный взрыв. Это произошло 29 августа 1949 года в присутствии Верховного командования Советской Армии и членов правительства. Все присутствовавшие на цолигоне увидели ослепительный свет, более яркий, чем свет солнца, грибообразное облако, уходящее в стратосферу.
Теперь цепная реакция деления ядер раскрыла себя для советских ученых во всех проявлениях — в управляемом и взрывном вариантах. 29 октября 1949 года Игорю Васильевичу было присвоено звание Героя Социалистического Труда. Тогда же ему была присуждена и Государственная премия. Казалось бы, можно было отдохнуть, ослабить напряжение в лабораториях, а Игорю Васильевичу взять, наконец, хоть короткий отпуск и махнуть куда-нибудь на море, покупаться, позагорать. Ведь с 1941 года он работал без отпуска, без отдыха!
Но мыслями Игоря Васильевича уже овладела новая проблема — синтез легких ядер. Задолго до этого по его заданию целый коллектив занимался реакциями синтеза (слияния ядер). И уже было ясно, что для их осуществления нужна сверхвысокая температура, которую может дать пока только ядерный взрыв.
Первый атомный взрыв зажег зеленый свет термоядерным реакциям.
«Многоэтажная» весна
Еще в мае 1944 года, когда институт только переезжал в новое здание, кто-то выглянул в окно и заметил: — Здесь виднее весна, чем в центре.
Игорь Васильевичу слышал эти слова, посмотрел в окно и задумчиво сказал:
— Ну, это пока первый этаж весны — травка, цветы. Добавим ей и второй этаж — разведем настоящий сад! И будет у нас, так сказать, многоэтажная весна.
Через пару лет территория института действительно превратилась в чудесный парк.
Теперь о другой весне. Д. И. Блохинцев назвал постройку реакторов весной атомной техники. Картина этой весны была бы неполной без налаживания производства урана-235. Ведь делящиеся вещества включают по крайней мере плутоний и уран-235, изотоп, содержащийся в естественном уране в количестве 0,7 процента. Так вот, параллельно с проблемой производства плутония Игорь Васильевич упорно занимался и получением урана-235.
Под руководством Курчатова были изучены все известные сейчас мировой технике методы разделения изотопов урана. Надо сказать, что изотопы эти почти ничем не различаются, кроме небольшой разницы в массе и тех свойствах, которые зависят от массы. Советские ученые разработали совершенные установки для разделения изотопов-близнецов.
Один из таких методов электромагнитная сепарация. Она основана на разделении ионов урана под действием сильного магнитного поля. Если ускорить ионы урана-235 и урана-238 и пустить их в магнитное поле, они будут двигаться по дуге, при этом ионы легкого изотопа отклоняются сильнее, чем тяжелого. Разделенные таким образом ионы оказываются в разных улавливателях.
Другой метод — газовая диффузия. Известно, что молекулы газов с различным удельным весом по-разному проникают (диффундируют) через пористую перегородку. Это похоже на действие сита, отсеивающего более мелкие частицы от крупных. Разделение производится в несколько ступеней.
Газодиффузионное предприятие может давать не только чистый уран-235, но и уран, обогащенный этим изотопом. Вместо обычных 0,7 процента урана-235 может содержаться 1,5 процента и больше. Разумеется, для этого нужно меньшее число ступеней, и стоит такое производство дешевле, чем получение чистого урана-235.
Каждое из направлений разделения изотопов урана возглавляется виднейшими учеными.
Создание в нашей стране производства чистого урана-235 и обогащенного урана явилось новым этапом в совершенном здании атомной техники, возводимом по проекту Игоря Васильевича Курчатова.
Новая победа имела далеко идущие последствия. Одно из них — это увеличение источников получения ядерных зарядов, которые шли в атомные арсеналы, усиливали мощь нашей страны.
Получение обогащенного урана открыло возможности для новой отрасли реакторостроения, в которой в качестве замедлителя стала применяться вода.
Напряженная работа ученых, конструкторов, инженеров, больших производственных коллективов нашей атомной промышленности дала результаты. В СССР был сделан запас атомного оружия, достаточный для того, чтобы защитить Родину от всяких посягательств. Испытания, проведенные в 1950—1951 годах, показали превосходные качества советского атомного оружия.
Много работая для укрепления обороноспособности Родины, Игорь Васильевич даже стал называть себя солдатом. На некоторых записках он ставил подпись: «Солдат Курчатов».
В декабре 1951 года ему в третий раз была присуждена Государственная премия. Его грудь украсила вторая золотая медаль «Серп и Молот».
И снова ни тени успокоения. С утра до ночи он работает в кабинете и лабораториях.
Пример его вдохновенного трудолюбия без лишних призывов действовал на всех сотрудников института. Появится у человека мысль: может, хватит, утомился вроде. Глянет он на главное здание: горит огонек. Борода на посту... Теплеет на душе, и новые силы в человека вливаются...
В 50-х годах не было более притягательного вопроса для американской прессы, чем создание атомного оружия в СССР. Предсказание о том, что Советский Союз долго еще не сможет иметь свое атомное оружие, было опровергнуто первым взрывом. Страницы печати Запада стали заполняться всякими выдумками об утечке атомных секретов из США и т. д. и т. п., на что сами американские специалисты и, в частности, доктор Джеймс Бекерлн, начальник секретного отдела Комиссии по атомной энергии, отвечал так: «Лично я считаю, что атомная бомба поступила на вооружение СССР в 1949 году благодаря усилиям советских ученых и инженеров», — и пояснил, что именно их усилиями «создавалось оружие и громадные заводы по производству делящихся материалов, необходимых для получения ядерного взрывчатого вещества».
И очень знаменательно звучало заявление в печати США одного из специалистов: «Основные трудности, которые должны были преодолеть Советы для создания бомбы, были связаны с тяжелой промышленностью и производством. Атомные секреты, фанатически оберегаемые Соединенными Штатами, скрыли от нас тот факт, что у Советского Союза были свои прекрасные ученые, которые могли найти ответы на все вопросы самостоятельно».
Что же, нам остается подтвердить это трезвое высказывание ссылкой на свидетельство Игоря Васильевича:
«Мы начали работу по практическому использованию атомной энергии в тяжелые дни Великой Отечественной войны, когда родная земля была залита кровью, когда разрушались и горели наши города и села, когда не было никого, кто не испытал бы чувства глубокой скорби из-за гибели близких и дорогих людей.
Мы были одни. Наши союзники в борьбе с фашизмом — англичане и американцы, которые в то время были впереди нас в научно-технических вопросах использования атомной энергии, вели свои работы в строжайше секретных условиях, и ничем они нам не помогли.
В конце войны, когда Германия уже капитулировала, а военная мощь Японии рухнула, американские самолеты сбросили две атомные бомбы на японские города Хиросиму и Нагасаки. Погибли от взрывов и пожаров более 300 тысяч человек, а 200—250 тысяч мирных жителей было ранено и поражено радиацией.
Эти жертвы понадобились американским военным политикам для того, чтобы положить начало беспримерному атомному шантажу и «холодной войне» против СССР.
Советские ученые сочли своим священным долгом обеспечить безопасность Родины и при повседневной заботе партии и правительства, вместе со всем нашим советским народом добились выдающихся успехов в деле создания атомного и водородного оружия».
Вторая молния
Дейтоны заявляют о себе
Одними из первых реакций, которые изучал Игорь Васильевич, были реакции под действием дейтонов. Теперь, на новом этапе овладения ядерной энергией, дейтоны снова заявили о себе: без них невозможны термоядерные реакции, те, что по современным представлениям науки являются источниками энергии Солнца и звезд. Наиболее многообещающими считались реакция слияния двух дейтонов и реакция слияния дейтона с ядром трития — сверхтяжелого водорода с массовым числом 3. Расчеты ученых показали, что выделение энергии при термоядерной реакции в расчете на единицу веса исходных продуктов значительно выше, чем при делении тяжелых ядер.
Мы уже отмечали, что дейтерий входит в состав тяжелой воды, а тяжелая вода содержится во всех водоемах мира, в том числе и в океанах. Значит, запасы дейтерия на Земле практически неограниченны, но разделить изотопы водорода не так трудно, как изотопы урана. В нашей стране под руководством Игоря Васильевича Курчатова было налажено промышленное производство тяжелой воды. Это открывало возможность развития третьей линии реакторостроения, с тяжелой водой в качестве замедлителя, и давало в руки ученых дейтерий, играющий решающую роль в термоядерных реакциях.
Вот что писал о дейтерии и организации производства его в нашей стране Игорь Васильевич в одной из своих статей: «Дейтерия в природе вполне достаточно — на каждые 6 тысяч ядер обычного водорода приходится одно ядро дейтерия. Литр обычной воды по энергии равноценен приблизительно 400 литрам нефти...
В ближайшие 15 лет ежегодная добыча угля и нефти в нашей стране достигнет в сумме около миллиарда тонн. Только 400 тонн дейтерия потребовалось бы для замены всего этого угля и нефти. Еще 20 лет назад эта величина могла показаться непомерно большой и труднодостижимой. Я помню, что до войны для работы на циклотроне в Ленинграде нам с большим трудом удавалось получать из Днепропетровска, где лабораторным способом в Институте физической химии Академии наук Украинской ССР велось изготовление тяжелой воды, граммы дейтерия. Теперь положение совсем другое. У нас создано промышленное производство дейтерия. Оно ведется разными способами».
Еще труднее, чем дейтерий, получить тритий. Игорь Васильевич не раз подчеркивал трудности производства трития. «Трития, — подчеркивал он, — в природе ничтожно мало. Изготовление трития в необходимых количествах вполне осуществимо при помощи нейтронного облучения лития, но это дорогой процесс».
Следует сразу же подчеркнуть своеобразие этих реакций, определившее коренное отличие организации исследований по сравнению с реакциями деления. Там ученые сначала получили управляемый процесс в реакторах, а потом, хорошо изучив его особенности в контролируемых, вполне безопасных условиях, осуществили реакцию взрывного типа. С термоядерным процессом так поступить нельзя: для его протекания нужна температура, которую можно создать только взрывом атомной бомбы.
При температуре в миллионы градусов вещество должно находиться в состоянии плазмы, то есть в виде полностью ионизированных атомов (голых ядер) и свободных электронов. Часть дейтонов при таком нагреве приобретают скорости, позволяющееим преодолевать электрические силы отталкивания, сближаться и вступать в реакцию синтеза. При этом из двух дейтонов может получиться ядро гелия с массовым числом 3 и вылетит один нейтрон. Если сливаются дейтон и ядро трития, то образуется ядро гелия с массовым числом 4 и также вылетает нейтрон.
Чтобы реакция развивалась, нужны все новые быстрые дейтоны. Их образование обеспечивается высокой температурой, которая должна развиваться в этом процессе. От слова «тепло» («термо») и произошло название реакций — термоядерные. Они происходят при взрыве водородной бомбы в течение менее чем миллионной доли секунды.
Ученые под руководством Игоря Васильевича разработали конструкцию водородной бомбы.
Еще один урок
Веселое настроение у наших атомников вызвало сообщение о сенсационном заявлении Гарри Трумэна, сделанном им сразу же после ухода с поста президента в 1953 году: «Я не убежден в том, что у России есть (атомная) бомба... Я не убежден в том, что русские имеют достаточно технических знаний, чтобы собрать все сложные механизмы бомбы и заставить ее действовать».
— Его бы на полигон, да поближе к эпицентру взрыва, — комментировал Игорь Васильевич, — тогда бы от него остались одни доказательства!
Не менее рассмешил наших ученых генерал Гровс, тот, который определил 20 лет для создания советской атомной бомбы. «Данные, — утверждал он, — только показывают, что в России действительно имели место ядерные взрывы. Это, однако, не доказывает, что у них есть готовая к применению атомная бомба». Подхватив эту сногсшибательную мысль, газета «Нью-Йорк таймc» поместила статью «У России есть атомная бомба, но насколько она хороша?».
Все эти небылицы наши ученые читали незадолго до отъезда на полигон для испытания... водородной бомбы.
8 августа 1953 года было опубликовано сообщение ТАСС о создании з СССР термоядерного оружия, Комиссия по атомной энергии США через несколько дней вынуждена была признать: «Утром 12 августа Советский Союз произвел испытание атомного оружия. Некоторые сведения, подтверждающие этот факт, были получены нами в тот же вечер. Последующие данные показывают, что при взрыве происходило не только деление, но и термоядерная реакция».
Тон зарубежной прессы, в том числе американской, резко изменился. Недавние пророки Трумэн и Гровс сели в калошу. А остальные подсчитывали, как же получилось, что советские ученые прошли период от испытания атомного оружия до испытания водородной бомбы за четыре года, а американским специалистам потребовалось на это вдвое больше времени.
Ставший президентом генерал Эйзенхауэр попытался задним числом побряцать ядерным оружием. Он утверждал, что США могли бы нанести СССР удар, когда они обладали атомным оружием, а у Советского Союза его не было, или когда США обладали термоядерным оружием, а у Советского Союза его не было.
Когда Игорь Васильевич прочел эту угрожающую тираду, он сразу же сказал:
— Обязательно надо дать ответ Эйзенхауэру, президент явно не в ладах с историей.
И действительно, на одной из сессий Верховного Совета СССР депутат Курчатов внес ясность в этот вопрос, «Президент Соединенных Штатов Америки не прав, — говорил И. В. Курчатов с трибуны Большого Кремлевского Дворца на весь мир. — К тому моменту, когда Советский Союз начал копить свои запасы атомного оружия, в США его было настолько мало, что оно не могло иметь серьезного значения в войне. Термоядерное же оружие было раньше создано в СССР, а не в США.
Обратимся, — продолжал Игорь Васильевич Курчатов, — к некоторым датам. В ноябре 1952 года в атолле Эниветок в Тихом океане Соединенные Штаты Америки произвели опытный взрыв термоядерного устройства под условным наименованием «Майк». Известный американский журналист Стюарт Олсоп дал образную характеристику «Майка». Он писал: «Майк» представлял собой чудовищно большое приспособление, превышающее по своим размерам большой дом; невозможно запустить в космос нечто столь большое, как дом; проблема заключается в том, чтобы уменьшить размеры «Майка» так, чтобы водородный заряд, достаточно маленький для того, чтобы его можно было поместить в баллистическую ракету, мог нанести мощный удар порядка миллиона тонн».
Такой заряд был создан, но не в Соединенных Штатах Америки, а в Советском Союзе, и испытан 12 августа 1953 года.
Задача создания термоядерного заряда, пригодного для военных целей, была решена в Соединенных Штатах Америки только через полгода — в 1954 году, после мартовских испытаний в том же атолле Эниветок.
С высокой трибуны сессии Верховного Совета СССР прозвучали тогда и слова предупреждения всякому, кто осмелится напасть на нашу прекрасную и могучую Родину:
«Советский народ вооружил свою армию всеми необходимыми видами атомных и термоядерных зарядов. Всякий, кто осмелится поднять атомный меч против него, от атомного меча и погибнет».
С мыслью о грядущем
«Достижения есть?»
«Высокий, статный, он постоянно был окружен людьми. Ходил стремительно, большими шагами, и за ним не поспевали. При этом мне всегда вспоминалась картина В. Серова „Петр I на набережной“, — так описывает академик А. П. Виноградов свои впечатления от встреч с И. В. Курчатовым в горячие „атомные“ деньки. — Черные смеющиеся глаза и борода лопатой — лицо, как будто взятое из старых хрестоматий. Этот большой человек был очень приветлив и любезен. Кто не помнит привычных его слов „физкультпривет“, которыми он начинал и кончал разговор с вами по телефону то ли ранним утром, то ли поздно ночью».
Кроме этого, полного юношеской силы и бодрости приветственного слова, как вспоминают сотрудники, любимым вопросом Игоря Васильевича был: «Достижения есть?»
Этот вопрос не был риторическим. В нем отражалась постоянная неослабная забота Курчатова о будущем нашей науки.
Занимаясь решением текущих задач, требовавших проведения неотложных исследовательских работ, вникая в ход проектирования, конструирования, оборудования и подготовки к пуску атомных объектов, Игорь Васильевич ни на минуту не забывал о перспективных проблемах науки. Он сам глубоко понимал и не уставал убеждать в этом других — не только ученых, но и руководителей народного хозяйства и промышленности, — что успешное и быстрое развитие техники требует самого широкого развития науки и поощрения даже таких исследований, которые на ближайший период как будто не обещают непосредственного практического выхода. Этим объясняется, что в самые напряженные дни, когда Игоря Васильевича одолевали повседневные заботы, связанные с оперативным решением неотложных научных и технических вопросов, он находил время для оказания помощи в организации исследования космических лучей, строительства ускорителей, по развитию биологии — словом, в организации областей науки, находившихся вне сферы его личных научных интересов.
В тех же областях, которыми он лично руководил и непосредственно занимался, он проявлял исключительное чутье к любому зернышку нового и умел помочь очистить это зернышко от «шелухи». В начале работы он старался сказать, стоит ли ею заниматься, обогатит ли она науку.
Если же работа сулит что-то ценное — не было человека, который бы умел с такой энергией добиваться от нее максимума. Начал интересное научное исследование — скажи новое оригинальное слово, взялся за создание новой машины — она должна получиться лучшей в мире. Таковы были требования Курчатова.
В нем всегда был какой-то азарт, которым он заражал всех, кто с ним работал.
Десятки и сотни ученых увлек он еще со студенческой скамьи и вывел на передовые рубежи науки.
А как действовал его личный пример непрерывного углубления своих научных знаний? Он, трижды Герой Социалистического Труда (третьей золотой медали «Серп и Молот» был удостоен в начале 1954 года), академик, организует в институте курс лекций по ядерной физике. И сам первый садится их слушать. Да как же не пойдут люди на такие лекции? Тем более что читались они на самом высшем уровне.
Или еще пример. В связи со стремительным прогрессом радиоэлектроники и потребностями все большего ее применения в ядерной физике Игорь Васильевич решил организовать курс лекций и по этой отрасли новейшей техники. Поручил читать этот курс... одному из молодых специалистов института. Можно себе представить, как окрылен был этот молодой-человек! Некоторые ученые, присутствовавшие на лекциях, потом удивлялись:
— Как, Игорь Васильевич, вы умеете определять таланты? Почему именно ему поручили?
— Человек по одежке протягивает ножки. Если мы их будем долго держать в коротких штанишках, они на всю жизнь останутся малышами в науке, — отвечал он.
Курчатов искренне гордился молодежью, верил в ее исполинские силы, «Объем атомных работ очень велик, — говорил он на XXсъезде КПСС, — но и силы наши теперь велики. На смену небольшому отряду ученых, которые начинали работу, выросла воспитанная партией армия ученых, инженеров, конструкторов, сильная, молодая, способная решать труднейшие задачи».
Игорь Васильевич умел трудиться весело, с радостью.
Давая задание, он всегда умел как-то по-особому, с самой захватывающей стороны показать его, увлечь им собеседника. И любое поручение начинало казаться легким и веселым.
Но бывало и по-другому. «Шутка и веселость, — вспоминает Д. И. Блохинцев, — сменялись подчас резкой строгостью, когда Игорь Васильевич видел перед собой человека, формально и несерьезно относящегося к своему долгу. Такому „ученому“ уже не было пощады».
Для решения сложных проблем Курчатов обычно созывал совещания представителей разных направлений науки и техники. Он следил, чтобы на таких совещаниях не было и тени пустословия, «шороха орехов», как он выражался. (Он часто приводил восточную притчу о продавце, торговавшем орехами за бесценок. Когда его спрашивали, почему он так делает, продавец отвечал: «Люблю шорох орехов».)
Он особенно ценил прямой разговор по существу. Как-то на совещании выступающие все ходили вокруг да около главной проблемы. Он неожиданно попросил своего помощника:
— Дмитрий Семенович, расскажи, пожалуйста, как дипломатия учит обходить главное.
— Пожалуйста, Игорь Васильевич. Из истории известны такие случаи, — с полной серьезностью начал помощник свой рассказ. — Одно высокопоставленное лицо пригласило гостей. Гости съехались, а хозяин все не появляется. Гости начинали возмущаться: пригласил, а самого нет! Вышел адъютант и объявил: на это есть тридцать шесть причин. Первая — он вчера сам умер...
В кабинете раздался смех.
Игорь Васильевич обратился к присутствующим:
— Итак, товарищи, не будем уподобляться героям этой побасенки. Начнем разговор о причинах номер один, то есть по существу.
...Особенно много внимания в середине 50-х годов Игорь Васильевич уделял развитию мирного атома. Примечательна фраза в одном из его выступлений: «Нестерпима мысль, что может начаться атомная и водородная война. Нам, ученым, работающим в области атомной энергии, больше чем кому бы то ни было видно, что применение атомного и водородного оружия ведет человечество к неисчислимым бедствиям».
Игорь Васильевич был страстным борцом за мир, за применение энергии атома в народном хозяйстве, культуре, науке.
Многое из того, над чем работали советские ученые-атомники, было широко обнародовано ими на сессии Академии наук СССР, посвященной мирному применению атомной энергии, и на первой Женевской конференции. В Женеве, где присутствовали представители 79 стран, советские ученые сделали 102 доклада. «Мы получили большое удовлетворение, — говорил И. В. Курчатов по этому поводу, — в связи с тем, что на этой конференции доклады наших ученых и инженеров были высоко оценены мировой научной общественностью».
В каждом докладе, звучавшем с трибун в Москве и Женеве, были и его энергия, труд, концентрированная воля. Он лично редактировал доклады, с обычной своей щедростью давал советы и рекомендации будущим докладчикам.
После постройки первых реакторов в институте атомной энергии под руководством Игоря Васильевича создавалась экспериментальная база, где получали «путевки в жизнь» основные узлы энергетических, транспортных, исследовательских ядерных установок. Здесь рождались и проверялись идеи создания новых тепловыделяющих элементов, испытывались конструкционные материалы, теплоносители.
В соответствии с замыслом Игоря Васильевича по созданию экспериментальной базы в апреле 1952 года был введен в эксплуатацию реактор РФТ, гораздо более совершенный, чем первый реактор. Его пуск имел принципиальное значение для реакторостроения — в нем впервые было применено диспергирование делящегося вещества в разбавителе. Этим путем удалось получить тепловыделяющие элементы с максимальным сроком службы.
Реактор РФТ имел тепловую мощность 10 тысяч киловатт, максимальный поток тепловых нейтронов 5*10^13 нейтрон/см^2сек. Топливом в реакторе служил уран с 10-процентным обогащением. Замедлителями были графит и отчасти вода. В дальнейшем, как мы увидим, Курчатов всячески пропагандировал и внедрял воду как замедлитель в разных типах реакторов.
Вместе с реактором в экспериментальную базу института вошла горячая металловедческая и другие лаборатории.
По предложению Игоря Васильевича в дальнейшем РФТ был реконструирован. Его мощность увеличилась вдвое, поток тепловых нейтронов в центральном канале почти вдесятеро. Возросло и число экспериментальных каналов для испытаний тепловыделяющих элементов. Тогда же были впервые испытаны тепловыделяющие элементы с ураном, обогащение которого было доведено до 90 процентов. Конструкция этих элементов была оригинальной и использовалась потом во многих реакторах. Вообще надо сказать, что РФТ послужил как бы пробным камнем для многих установок, в том числе для первой атомной электростанции, Ново-Воронежской атомной электростанции, Чехословацкой атомной электростанции, реакторов ледокола «Ленин» и др.
Игорь Васильевич непосредственно руководил и исследованиями действия излучений на вещества. В результате было установлено сильное изменение свойств облученного графита, а также факт выделения энергии, запасенной его кристаллической решеткой. Все это помогло улучшить проектирование и эксплуатацию реакторов с графитовым замедлителем. Игорь Васильевич предложил разобрать и исследовать кладку уран-графитового реактора, проработавшего четыре года. Это помогло раскрыть сущность процессов, происходящих в облученном графите.
Игорь Васильевич сыграл первостепенную роль в постройке первенца советской ядерной энергетики — атомной электростанции.
Предстояло впервые в мире построить электростанцию с атомной топкой. Эта топка — реактор. Каким он должен быть? С замедлителем или без него, с водяным или газовым охладителем? Окончательное решение по всем этим вопросам принял Игорь Васильевич. После того как Н. А. Доллежаль по его заданию подготовил первоначальную схему реактора, состоялось совещание, на котором Игорь Васильевич подвел итог предварительному обсуждению:
— Останавливаемся на реакторе с водяным охлаждением и графитовым замедлителем. По ним у нас уже есть опыт.
Но трудностей будет немало. Поэтому уже сейчас надо заложить модели реактора и изучить процессы в нем.
Для постройки станции было определено место — Обнинск. Развернулись исследования по всем многообразным направлениям. И вдруг... Как много этих «вдруг» бывало уже в жизни Курчатова! Поступили соображения об экономической нецелесообразности и бесперспективности будущей станции. Игорь Васильевич смело (в который раз!) взял ответственность на себя за результаты эксперимента огромной важности, как он подчеркивал, не только для науки, но и для энергетики страны в ближайшем будущем.
Подготовкой к пуску станции непосредственно руководил Игорь Васильевич, прибывший для этого в Обнинск. «Он торопил нас, — вспоминает Д. И. Блохинцев, — с загрузкой ураном реактора, чтобы поскорее убедиться в том, что мы, обнинцы, не ошиблись в расчетах критической массы реактора... К нашей великой радости, реактор ожил... Это был „физический пуск“. За ним последовало то, что все расценили как настоящее чудо. Из одной из труб вырвалось долгожданное облачко пара, впервые в истории полученного за счет энергии ядра. Радости не было конца».
С еще большим подъемом ученые стали готовить системы к пуску. Наконец И. В. Курчатову доложили, что «мощность 100 процентов, турбина дает 5 тысяч киловатт. Все по проекту». 27 июня 1954 года атомная станция дала первый ток.
В качестве горючего в реакторе использовался обогащенный уран. Замедлителем служил графит. Тепло, образующееся в процессе ядерной реакции, отводилось водой под большим давлением. Это тепло поступало в парогенератор, а полученный пар подводился к турбине, которая и вращала электрогенератор.